Sequential Estimation of Dynamic Discrete Games

Victor Aguirregabiria and Pedro Mira

Presented by
Yang, Yong Hyeon
DYNAMIC GAMES

• Variables
 – x_t: observable state variable
 – ε_t: unobservable state variable
 – a_t: observable decision variable (discrete, e.g. binary)

• Firms choose optimal a_{it} that maximizes

$$V_i(x_t, \varepsilon_{it}) = \max_{a_{it}} E \left[\beta^{s-t} \sum_{s=t}^{\infty} \tilde{\Pi}_i(a_s, x_s, \varepsilon_{is}) \middle| x_t, \varepsilon_{it} \right]$$

where expectations are over others’ strategies and ε_{jt}’s, meaning that
 – Firms’ profit depends on other firms’ characteristic and decision.
 – Firms observe their own private information before decision.
 – Firms’ private information affects their profit only.
DYNAMIC PROGRAMMING

• Usually we denote

\[V_i(x_t, \varepsilon_{it}) = \max_{a_{it}} E \left[\tilde{\Pi}_i(a_t, x_t, \varepsilon_{it}) + \beta V_i(x_{t+1}, \varepsilon_{it+1}) \bigg| x_t, \varepsilon_{it} \right] \]

or simply drop time subscripts to write

\[V_i(x, \varepsilon_i) = \max_{a_i} E \left[\tilde{\Pi}_i(a, x, \varepsilon_i) + \beta V_i(x', \varepsilon'_i) \bigg| x, \varepsilon_i \right] \]

• \(\tilde{\Pi} \) is known

• \(V \) is unique given \(\tilde{\Pi} \) and distribution of \(x' \) and \(\varepsilon'_i \).
ESTIMATION

• Firms’ decision depends on parameters.

• Estimate parameters that make firms’ decision seem reasonable!
 – GMM
 \[E[a_i - P_i(x; \theta)|x] = 0 \]
 meaning that given \(x \), firm \(i \) chooses \(a_i = 1 \) with probability \(P_i(x; \theta) \).
 – MLE
 \[\max \log L(\varepsilon; \theta) = \log L(a, x; \theta) \]

• Basically this requires us to solve for \(V_i \) explicitly.
 – \(P_i(x; \theta) \) can be derived from \(V_i(x, \varepsilon_i) \).
 – \(L(a, x; \theta) \) depends on likelihood of \(a \), which can be obtained from \(V_i(x, \varepsilon_i) \).
PROBLEM

• This task requires much time.
 – Need to numerically solve for V_i using contraction mapping.
 – Need to simulate integrals (or use quadrature).
 – Need to repeat these for many candidate parameters.

\[
V_i(x, \varepsilon_i; \theta) = \max_{a_i} E \left[\tilde{\Pi}_i(a, x, \varepsilon_i; \theta) + \beta V_i(x', \varepsilon'_i) \bigg| x, \varepsilon_i; \theta \right]
\]

• Still doable, but want to reduce time cost.
SOLUTION

• Try to bypass the step for contraction mapping and get $P_i(x)$ or $L(a, x; \theta)$ directly using data.
 – Hotz and Miller (1993): GMM in the context of individual dynamic decision
 – Hotz, Miller, Sanders and Smith (1994): include simulation
 – Pakes, Ostrovsky, and Berry (2004): extend to dynamic games
 – Aguirregabiria and Mira (2002): MLE, individual dynamics, iteration

• Solve for V on some set of parameters and use it repeatedly
 – Ackerberg (2001): use importance sampling
SUMMARY OF THIS PAPER

• Extend Aguirregabiria and Mira (2002) to dynamic games
 – Need to consider strategic complexity

• Try to incorporate unobserved heterogeneity
 – Hotz and Miller cannot be applied to the case where unobserved heterogeneous variable exists.
 (to be explained later)

• Conclusion: Nested Pseudo Likelihood (NPL) estimator is useful when
 – multiple equilibria exist,
 – state spaces are large, and/or
 – conditional choice probabilities are not easily estimated
 (first and third will be explained later)
MODEL IN DETAIL

• Assume additive separability

\[
\tilde{\Pi}_i(a_t, x_t, \varepsilon_{it}) = \Pi_i(a_t, x_t) + \varepsilon_{it}(a_{it})
\]

• Assume conditional independence

\[
p(x_{t+1}, \varepsilon_{t+1} | a_t, x_t, \varepsilon_t) \\
= p(\varepsilon_{t+1} | x_{t+1}, a_t, x_t, \varepsilon_t) p(x_{t+1} | a_t, x_t, \varepsilon_t) \\
= p_{\varepsilon}(\varepsilon_{t+1}) f(x_{t+1} | a_t, x_t)
\]

• Assume independent error across players

• Assume discrete and finite \(x_t \)
VALUE FUNCTION

• Original value function is

\[
V_i(x, \varepsilon_i) = \max_{a_i} E \left[\Pi_i(a, x) + \varepsilon_i(a_i) + \beta V_i(x', \varepsilon'_i) \mid x, \varepsilon_i \right]
\]

• Let \(\sigma = \{\sigma_i\}_{i=1}^N \) be strategy profiles players are using.

\[
V_i^\sigma(x, \varepsilon_i) = \max_{a_i} E \left[\Pi_i^\sigma(a, x) + \varepsilon_i(a_i) + \beta V_i^\sigma(x', \varepsilon'_i) \mid x, \varepsilon_i \right]
\]

• Let \(\pi_i^\sigma(a_i, x) = E[\Pi_i^\sigma(a, x)] \) be the expected profit.

\[
V_i^\sigma(x, \varepsilon_i) = \max_{a_i} \left\{ \pi_i^\sigma(a_i, x) + \varepsilon_i(a_i) + \beta E[V_i^\sigma(x', \varepsilon'_i) \mid x, \varepsilon_i] \right\}
\]

• Explicitly writing integrals,

\[
V_i^\sigma(x, \varepsilon_i) = \max_{a_i} \left\{ \pi_i^\sigma(a_i, x) + \varepsilon_i(a_i)
\right.

+ \beta \sum_{x'} f^\sigma(x' \mid a_i, x) \int V_i^\sigma(x', \varepsilon'_i) g_i(\varepsilon'_i) \, d\varepsilon'_i \right\}
\]
CONDITIONAL CHOICE PROBABILITY

• Define $v_i^\sigma(a_i, x)$ as

$$v_i^\sigma(a_i, x) = \pi_i^\sigma(a_i, x) + \beta \sum_{x'} f_i^\sigma(x'|a_i, x) \int V_i^\sigma(x', \varepsilon'_i) g_i(\varepsilon'_i) d\varepsilon'_i$$

so that

$$V_i^\sigma(x, \varepsilon_i) = \max_{a_i} \left\{ v_i^\sigma(a_i, x) + \varepsilon_i(a_i) \right\}$$

• Conditional choice probability $P_i(x)$ is defined as

$$P_i(x) = E[a_i|x] = \Pr(a_i = 1|x) = \Pr \left(v_i^\sigma(1, x) + \varepsilon_i(1) > v_i^\sigma(0, x) + \varepsilon_i(0) \right)$$
INTEGRATED VALUE FUNCTION

• Use integrated value function to get $P_i(x)$.

$$V_i^\sigma(x) = \int V_i^\sigma(x, \varepsilon_i) g_i(\varepsilon_i) d\varepsilon_i$$

$$= \int \max_{a_i} \left\{ v_i^\sigma(a_i, x) + \varepsilon_i(a_i) \right\} g_i(\varepsilon_i) d\varepsilon_i$$

where now

$$v_i^\sigma(a_i, x) = \pi_i^\sigma(a_i, x) + \beta \sum_{x'} f^\sigma(x'|a_i, x) V_i^\sigma(x')$$

• Why is $V_i^\sigma(x)$ useful?

 – Decrease in the number of state spaces
 – Easy to calculate $v_i^\sigma(a_i, x)$: do not need to do integral
 → Easy to calculate $P_i(x)$: e.g. Type I extreme value distribution implies

$$P_i(x) = \frac{e^{v_i^\sigma(1,x)}}{e^{v_i^\sigma(0,x)} + e^{v_i^\sigma(1,x)}}$$
METHODOLOGY

• Need to do contraction mapping to get $V_i^\sigma(x)$?

$$V_i^\sigma(x) = \int \max_{a_i} \left\{ \pi_i^\sigma(a_i, x) + \varepsilon_i(a_i) + \beta \sum_{x'} f^\sigma(x'|a_i, x)V_i^\sigma(x') \right\} g_i(\varepsilon_i) d\varepsilon_i$$

• NO. Then we would have the same computational burden.

• Alternatively, if we have an estimate of $v_i^\sigma(a_i, x)$, say, $\hat{v}_i^\sigma(a_i, x)$,

$$\hat{V}_i^\sigma(x) = \int \max_{a_i} \left\{ \hat{v}_i^\sigma(a_i, x) + \varepsilon_i(a_i) \right\} g_i(\varepsilon_i) d\varepsilon_i$$

is a good estimate of $V_i^\sigma(x)$.

• Unfortunately, we do not have an estimate of $v_i^\sigma(a_i, x)$.

• But we can estimate $P_i(x)$. Can we use this?

• YES. It is actually a part of strategies σ.
ALTERNATIVE WAY

- Find a way to go from $P_i(x)$ to $V_i^\sigma(x)$.

\[
V_i^\sigma(x) = \int \max_{a_i} \left\{ \pi_i^\sigma(a_i, x) + \varepsilon_i(a_i) + \beta \sum_{x'} f^\sigma(x'|a_i, x)V_i^\sigma(x') \right\} g_i(\varepsilon_i) d\varepsilon_i
\]

\[
= P_i(x) \left[\pi_i^\sigma(1, x) + E[\varepsilon_i(1)|a_i = 1, x] + \beta \sum_{x'} f^\sigma(x'|a_i = 1, x)V_i^\sigma(x') \right] \\
+ \left[1 - P_i(x)\right] \left[\pi_i^\sigma(0, x) + E[\varepsilon_i(0)|a_i = 0, x] + \beta \sum_{x'} f^\sigma(x'|a_i = 0, x)V_i^\sigma(x') \right]
\]

- Use estimated conditional choice probability $\widehat{P_i}(x)$ to get

\[
\widehat{V}_i^P(x) = \widehat{P_i}(x) \left[\pi_i^P(1, x) + E[\varepsilon_i(1)|a_i = 1, x] + \beta \sum_{x'} \widehat{f^P}(x'|a_i = 1, x)\widehat{V}_i^P(x') \right] \\
+ \left[1 - \widehat{P_i}(x)\right] \left[\pi_i^P(0, x) + E[\varepsilon_i(0)|a_i = 0, x] + \beta \sum_{x'} \widehat{f^P}(x'|a_i = 0, x)\widehat{V}_i^P(x') \right]
\]

- Since x is finite, $\widehat{V}_i^P(x)$ can be easily obtained using matrix calculation.
SUMMARIZE THE PROCEDURE

(1) Estimate \(\hat{P}_i(x) \).

(2) Obtain \(\hat{\pi}_i^P(a_i, x; \theta) \) and \(\hat{f}^P(x'|a_i, x; \theta) \)

(3) Solve for \(\hat{V}_i^P(x; \theta) \)
 This is a good estimate of \(V_i^\sigma(x; \theta) \).

(4) Compute \(\hat{v}_i^P(a_i, x; \theta) \)
 \[
 \hat{v}_i^P(a_i, x; \theta) = \hat{\pi}_i^P(a_i, x; \theta) + \beta \sum_{x'} \hat{f}^P(x'|a_i, x; \theta) \hat{V}_i^P(x'; \theta)
 \]

(5) Derive \(\tilde{P}_i(x; \theta) \): e.g. Type I extreme value distribution implies
 \[
 \tilde{P}_i(x; \theta) = \frac{e^{\hat{v}_i^P(1,x;\theta)}}{e^{\hat{v}_i^P(0,x;\theta)} + e^{\hat{v}_i^P(1,x;\theta)}}
 \]

(6) (Hotz and Miller) Estimate parameters that satisfies
 \[
 E \left[a_i - \tilde{P}_i(x; \theta) \bigg| x \right] = 0
 \]
THEORETICAL REPRESENTATION

- A Markov Perfect Equilibrium as a Fixed Point
 - Let Ψ be a best response mapping.
 - Then, P, a set of conditional choice probabilities, is a MPE iff
 \[P = \Psi(P) \]
 meaning a fixed point of Ψ.

- Put true P, then we would get P in the last under true parameters.
INTRODUCTION TO ESTIMATION

• Hotz and Miller, and Pakes, Ostrovsky and Berry use GMM.
• Aguirregabiria and Mira use MLE.
 – But this is not a standard MLE.
 – Maximize likelihood of discrete (e.g. binary) choice
 \[
 \max_{\theta} \sum_{m=1}^{M} \sum_{t=1}^{T} \sum_{i=1}^{N} \log \tilde{P}_i(x_{mt})^{a_{imt}} \left[1 - \tilde{P}_i(x_{mt}) \right]^{1-a_{imt}}
 \]
 where \(m \) denotes markets.
 – Since \(\tilde{P}_i(x) \) is not a true probability when \(\theta \) is not a true parameter, we call this the pseudo likelihood function, and the maximizer is called the pseudo maximum likelihood (PML) estimator.

Note: The precise definition of pseudo likelihood function is broader

\[
Q_M(\theta, P) = \frac{1}{M} \sum_{m=1}^{M} \sum_{t=1}^{T} \sum_{i=1}^{N} \log \Psi_i(a_{imt}|x_{imt}; P, \theta)
\]

where \(\Psi_i \) is a best response mapping given the initial \(P \).
PML ESTIMATION

• Infeasible PML estimation

 – Suppose we know true P. Use this to get \tilde{P}.
 – Form a pseudo likelihood function, and find θ maximizing it.

 \[
 \sqrt{M} (\hat{\theta} - \theta) \xrightarrow{d} N(0, \Omega_{\theta\theta}^{-1})
 \]

 where $\Omega_{\theta\theta} \equiv E[\nabla_{\theta} s_m \nabla_{\theta} s'_m]$ is the information matrix.

• 2 step PML estimation

 – Estimate \hat{P} nonparametrically so that $\sqrt{M}(\hat{P} - P) \xrightarrow{d} N(0, \Sigma)$.
 – Use this to get \tilde{P}.
 – Form a pseudo likelihood function, and find θ maximizing it.

 \[
 \sqrt{M} (\hat{\theta} - \theta) \xrightarrow{d} N(0, V_{2S})
 \]

 where $V_{2S} = \Omega_{\theta\theta}^{-1} + \Omega_{\theta\theta}^{-1} \Omega_{\theta P} \Sigma \Omega'_{\theta P} \Omega_{\theta\theta}^{-1}$

 – Identification assumptions are required.
IDENTIFICATION ASSUMPTION

- Denote true P by P^0.
- Assume

 (A) For every observation (m, t), P^0 is played.
 (B) Players expect P^0 to be played in future periods.
 (C) For any $\theta \neq \theta^0$, the solution of $P = \Psi(P)$ is $P \neq P^0$.
 (D) The observations are independent across markets.
DRAWBACK OF THE PML ESTIMATOR

• Inefficiency
 – V_{2S} depends on Σ.
 – If \hat{P} is inefficient, $\hat{\theta}$ is inefficient, too.

• Bias
 – Imprecise \hat{P} makes huge bias, especially in small samples.
 – e.g. if we use crude frequency (accept/reject) estimator.

• Feasibility
 – \hat{P} may not be estimated.
 – e.g. if unobserved heterogeneous variable exists.

• Motivates another estimator.
FIXED POINT OF THE PROCEDURE

• Iterations on Procedure

 – Start with \hat{P}_0.

 – Use this to get $\tilde{P}(x; \theta)$. Find $\hat{\theta}_1$ maximizing the PL function.

 – Define $\hat{P}_1(x) = \tilde{P}(x; \hat{\theta}_1)$.

 – Use this to get $\tilde{P}(x; \theta)$. Find $\hat{\theta}_2$ maximizing the PL function. ⋯

 – Define $\hat{P}_{K-1}(x) = \tilde{P}(x; \hat{\theta}_{K-1})$.

 – Use this to get $\tilde{P}(x; \theta)$. Find $\hat{\theta}_K$ maximizing the PL function.

• Includes 2 step PML ($K = 1$ with $\hat{P}_0 = \hat{P}$)

• As $K \to \infty$, the sequence $\{\hat{\theta}_K, \hat{P}_K\}$ converges.

 – Put its limit, then we get the same: a fixed point of the procedure.

 – If its limit is singleton, $\hat{\theta}_\infty$ is consistent.
NESTED PML ESTIMATION

• Nested PML (NPL) estimator is defined as follows.
 – Find all NPL fixed points.
 – Find the maximizer of PL function among them. Call it the NPL estimator.

• Properties
 – Consistent: \(\hat{\theta} \xrightarrow{p} \theta \)
 – Asymptotic Normality
 \[\sqrt{M}(\hat{\theta} - \theta) \xrightarrow{d} N(0, V_{NPL}) \]
 – More efficient than the infeasible PML estimator under some condition.
 – Less finite sample bias.
 – Any initial \(\hat{P}_0 \) leads to the NPL estimator \(\hat{\theta} \).
 So can be applied to the case where \(\hat{P} \) may not be estimated.
 – Existence of multiple equilibria does not lead to multiple NPL fixed points.
 – Still require the same identification assumptions.
MONTE CARLO EXPERIMENT

• Use the model of firms’ entry and exit.
 – 5 firms choose to enter or exit upon 160 states.
 – Try to estimate cost and revenue parameters.

• Compare infeasible/crude frequency 2 step/logit 2 step PML estimators with the NPL estimator.
 – NPL always converges (faster with logit initial estimator).
 – It always converges to the same estimate regardless of initial guess.
 – Crude frequency 2 step PML has a very large bias.
 – NPL has sometimes less variance and MSE than infeasible PML.
 – Logit 2 step PML is pretty good.

• Using a smooth nonparametric estimator in the 1st step reduces bias in the 2nd step. (Pakes, Ostrovsky, and Berry)
PERMANENT UNOBSERVED HETEROGENEITY

- What if a state variable is unobserved and heterogeneous but permanent?
 - Let ω_m is a time-invariant market characteristic.
 - Common knowledge to the players but unobserved to the econometrician.
 - Need to construct $P_i(x, \omega)$ to use the same method.
 - Problem: cannot construct $P_i(x, \omega)$ since ω is not observed.

- Still doable with the original value function method.
- Infeasible with Hotz and Miller style estimation.
- Aguirregabiria and Mira propose the method and the condition.
CONDITION AND METHOD

• Assume conditional iid
 – Let x_m be time invariant market characteristics.
 – Given x_m, ω_m is iid across markets: $\Pr(\omega_m = \omega^l | x_m) = \varphi_l(x_m)$
 – ω_m does not affect $f(x' | a, x)$

• The idea is that
 – write ω_m as a function of observable state variables and parameters.
 – residual is iid, so we can do ML type estimation.

\[
\log \Pr(\text{data}) = \sum_{m=1}^{M} \log \Pr(a_m, x_m)
= \sum_{m=1}^{M} \log \left(\sum_{l=1}^{L} \varphi_l(x_m) \Pr(a_m, x_m | \omega^l) \right)
\]
EMPIRICAL APPLICATION

• Use Chilean industries of five sectors.
 – Firms choose to enter or exit
 – There is a permanent unobserved heterogeneity ω_m taking on 21 values.

• Results
 – NPL always converges.
 – It always converges to the same estimate.
 – Unreasonable estimate without ω_m: it says that a firm’s profit increases with the number of firms.
 – Including ω_m makes reasonable estimation.
 – Actual interpretation of parameters is not interesting.