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Abstract

Switching costs and the persistence of idiosyncratic preference influence
switching behavior of consumers. This paper provides theorems identify-
ing those switching factors using churn rates observed at the market level,
which are defined as the rate at which users of a product switch out in the
next period. Nonparametric methods are employed to investigate what can
be identified about each switching factor from churn rates. Transition in
idiosyncratic preference shocks is fully identified, and time-varying product-
dependent switching costs are identified. Moreover, the underlying utility
function is nonparametrically identified throughout the paper. These results
imply that consistent estimation is possible without individual level data. I
estimate demand for the U.S. mobile phone service, which illustrates that
excluding substantial switching costs from a model may lead to inconsistent
estimation.
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1 Introduction

Consumers often purchase the same product repeatedly, either because they have a

persistent preference or because switching between products is costly. Discovering the

factors that affect consumer switching behavior is important for firms and governments,

because misunderstanding them may lead to incorrect policies.1 Though some of those

switching factors have been empirically studied, they have not been formally identified.

Intuitively individual level data would identify switching factors, but such data is not

readily available.2 This paper therefore provides theorems identifying switching factors

using readily observable market level information on switching patterns.

I show identification using a churn rate, defined as the rate at which consumers

who purchased a product in the last period switch out from it in this period. Low churn

rates imply that many consumers stay with the same product and therefore signal high

switching costs or highly persistent idiosyncratic preferences. Switching costs are the

costs incurred by consumers who change products, including explicit fees as well as

implicit transaction costs. Consumers who would otherwise switch out of a product

may not do so to avoid paying such costs.3 On the other hand, consumers may buy the

same product because they still prefer it most. Heterogeneity across consumers which

makes them choose different products can be highly persistent over time, in which case

a small number of consumers switch out.

I extend a discrete choice random utility model in two different ways to include

switching factors. In each extension, I consider only one switching factor and show

what is the most that can be identified about it.4 The first is the case where unob-

served heterogeneity changes over time in a flexible way. Transition in the unobserved

heterogeneity is nonparametrically identified with churn rates. It is shown that we can

fully recover the transition under some assumptions. I also provide a theorem on its

1See Farrell and Klemperer (2007) for a theoretical review.
2I do not know any work which has proven identification of switching factors with individual level

data. However, the theorem in this paper implies such a case, since market level data can always be
constructed using individual level data with loss of information.

3If a switching cost is negative, consumers would switch more often. Although negative switching
costs are unusual, this paper allows for such a case.

4Simultaneously identifying the two factors is not feasible without restrictive assumptions. A
discussion on the model with the two factors is provided at the end of Section 4.
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partial identification with weaker assumptions. In the literature, unobserved hetero-

geneity is usually assumed to be either fixed or completely independent over time for

an individual, but this paper allows it to evolve in a flexible transition pattern.5

A model with switching costs is considered next. Time-varying product-dependent

switching costs are identified under the assumption that they enter the utility function

in an additively separable way. While there are many types of costs related to switching,

I include only quitting costs in the model. This is mainly because modeling quitting

costs utilizes the churn rates data most efficiently.6 The model with quitting costs

can approximate those with other switching costs to some extent, in which sense the

identification theorem in this paper has implications on those models. It is easily shown

that quitting costs are obtained through a contraction mapping when the idiosyncratic

preference includes a random variable of the logit distribution.

Switching costs have been modeled frequently in the literature. Erdem, Keane,

Öncü, and Strebel (2005) explicitly model how consumers pay different amounts to get

different levels of information. Uncertainty and learning costs play the role of switch-

ing costs in this case. Osborne (2007) and Cullen and Shcherbakov (2010) count on

individual level data to measure switching costs, while Kim (2006) and Shcherbakov

(2009) estimate switching costs using market level data. However, these papers do

not provide a formal identification result, as is presented here.7 Shy (2002) illustrates

identification of switching costs, but uses a model with two firms producing homoge-

neous goods. The model presented in this paper allows for more than two differentiated

products.

This paper also contributes to the literature on identification of demand in a dis-

crete choice model. A utility function is nonparametrically specified throughout this

5Chintagunta, Jain, and Vilcassim (1991) investigate brand switching behaviors with fixed effects
in their model, and Gönül and Srinivasan (1993) study brand switching with a random coefficients
logit model, where the random coefficients are fixed over time for a household. Sun, Neslin, and
Srinivasan (2003) examine switching behaviors of forward looking consumers with fixed effects. These
papers use individual level data.

6If the switching rate for every pair of products is observed, other types of switching costs can be
identified in addition to quitting costs.

7Some papers give an intuitive explanation of what features in data identify the factors of interest.
See Cullen and Shcherbakov (2010) for example.
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paper. In addition, a contemporaneous distribution of unobserved heterogeneity is also

assumed to be nonparametric. It is shown that the utility function and the hetero-

geneity distribution are identified with market level data. Since Hausman and Wise

(1978) proposed an estimation method for a parametric demand model with individual

level data, many papers have investigated the identification of demand. Ichimura and

Thomson (1998), and Bajari, Fox, Kim, and Ryan (2009) show identification of the

distribution of random coefficients in a linear utility model. Berry (1994) and Berry,

Levinsohn, and Pakes (1995) discuss identification of a parametric demand model us-

ing market level data. This paper provides a nonparametric identification result with

market level data which is not or only partially considered by the above papers.

Nonparametric identification of demand with market level data has been tried

recently. Berry and Haile (2009) nonparametrically identify a demand function and

the underlying distribution of the unobserved heterogeneity. However, no switching

factor is considered in their model. In addition, they do not fully identify the underly-

ing utility function.8 Identifying the utility function enables us to do a counterfactual

analysis, which would otherwise be limited by partial knowledge of the utility func-

tion. I do not allow price to be correlated with unobserved heterogeneity, while Berry

and Haile (2009) do. However, the model in this paper is general enough, since the

distribution of the unobserved heterogeneity is nonparametrically specified and identi-

fied. Hence this paper generalizes the multinomial probit assumption, which generates

flexible substitution patterns across products in a market.

Chiappori and Komunjer (2009) show identification of a utility function with

combined datasets of market-level and individual-level variables. However, they assume

that the unobserved characteristic of products is additively separable in the utility

function. I show that a utility function is identified with market level data, even

when the utility function is not separable in the unobserved characteristic of products.

This approach requires an assumption that the measurement unit of the unobserved

characteristic be specified. I follow Matzkin (2010a) and Berry and Haile (2009) for

such an assumption. Matzkin (2010b) studies identification of a utility function with

individual level data, allowing for flexible extensions of the model, including one to the

8In particular, utility is not identified in terms of price, although the distribution of unobserved
heterogeneity partially captures it.

4



discrete choice case. However, she does not consider identification with market level

data, which this paper does.

Using data from the mobile phone service industry in the United States, I show

that including switching costs changes the estimation result. The empirical model in

this paper allows for fully flexible quitting costs, different across products and over time.

A parametric utility function is employed due to the small sample size. The assumption

of zero switching costs fails to predict churn rates in the data, which suggests that

switching costs need to be considered. Including switching costs reduces the estimated

price coefficient by 39 percent. This result implies that a model without switching

costs yields biased estimates when there are substantial switching costs. Although the

model is estimated under a simple logit assumption for the idiosyncratic preference,

the implications apply to other specifications as well.

Churn rates are easier to obtain than individual level data as they are free from

issues of private information and confidentiality for individual level data. Churn rates

are available in industries where a subscription is required to purchase and use a com-

modity, so that switching patterns are kept track of over time. Examples include

mobile phone service, banking, insurance, and cable television and internet providers.9

Even in other industries without such features, churn rates can be provided whenever

purchase histories of consumers are recorded.

The model developed in this paper can be extended in several ways. Knowledge

of the evolution of unobserved heterogeneity enables firms to tailor promotional strate-

gies to different types of consumers depending on the persistence of idiosyncratic pref-

erence. Introducing type-dependent promotion coupled with persistent idiosyncratic

preferences has a dynamic impact on consumer behaviors. Identification of transition

in unobserved heterogeneity shown in this paper has implications on such an extension.

Another way of extension is modeling transition and switching costs together. Formal

identification of such a model is not considered in this paper for its intractability, but its

estimation is interesting because it tells us whether switching behaviors originate from

state dependence or unobserved heterogeneity.10 A model of learning with transition

9Some of those industries may not provide such information publicly, but it is potentially available.
10See Chamberlain (1984) for details on separate identification of state dependence and fixed effects.

See also Honorè and Kyriazidou (2000) and Wooldridge (2005) for extensions.
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in unobserved heterogeneity is also an interesting extension.

The paper is organized as follows. Section 2 describes the model and introduces

necessary assumptions on an idiosyncratic preference. Section 3 discusses nonparamet-

ric identification of the transition probabilities of unobserved idiosyncratic preference

shocks, and Section 4 focuses on identification of unobserved switching costs. Both sec-

tions allow for a nonparametric utility function. In Section 5, I estimate an empirical

model of the U.S. mobile phone service industry. Section 6 concludes.

2 Model of Random Utility

A discrete choice model with random utility is considered in this paper. Identification

of switching factors in such a model can be applied to many cases because a discrete

choice model is widely used in the recent industrial organization literature to analyze

industries where consumers buy at most one good in a given period with a very high

probability.11 If the industry is known for high or low frequency of consumer switching

patterns, this paper suggests consideration of switching factors in the model.

In each period, consumers choose among J products, and buy good j if the utility

from j is greater than that from any other good. The utility individual i gets from

commodity j is given by

uijt = u(pjt, zjt, ξjt, εijt) (1)

where t denotes geographic or temporal markets. pjt ∈ R+, zjt ∈ RG, and ξjt ∈ R
stand for price, observed characteristics, and the unobserved characteristic of product

j in market t, respectively. There are several ways of interpreting the unobserved

characteristic of products in the literature. It can be the quality of the product,12

a single index of characteristics that are hard to measure, or market level demand

shocks to the product.13 εijt captures any residual effect not explained by the above

11For example, Berry, Levinsohn, and Pakes (1995) use a discrete choice model in analyzing the
automobile market with annual car sales data, since it is very likely that a person buys a car or none
in a given year. Hendel and Nevo (2006) examine at the laundry detergent market, where consumers
buy more often but the data are observed more frequently as well.

12See Bresnahan (1987) and Berry (1994) for example.
13See Nevo (2001) for example.
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measures. It may be interpreted as individual preference shocks to consumer i for

product j in market t, including income level, product loyalty, and individual need for

the product. In general εijt may be a multi-dimensional variable, but I restrict it to a

single dimensional one, that is εijt ∈ R.

It is common in the literature to define the outside good. In principle it must

refer to buying nothing, but sometimes it can be interpreted as buying minor products

whose information is not available. Usually it is assumed that14

ui0t = 0 (2)

In the linear utility model, this assumption is equivalent to regarding the outside good

as a product with no characteristic and zero price. This plays the role of location

normalization since consumers make a pairwise comparison of utilities from all the

products in a discrete choice model. I now impose some restrictions on εijt.

Assumption 1 (Additive Preference Shock) The preference shock εijt enters the

utility function additively.

uijt = δ(pjt, zjt, ξjt) + εijt (3)

Let εit = (εi1t, · · · , εiJt)
′ and denote pt, zt and ξt similarly.

Assumption 2 (Independence) The series {εit}∞t=1 are independent of the series

{pt, zt, ξt}∞t=1.

Assumption 3 (Distribution) εit is independent across i, and is identically dis-

tributed over i and t. It is absolutely continuously distributed, and the support of the

density function is connected. The joint distribution of εit is denoted by Fε.

Note that Assumption 1 alone does not impose a restriction on the utility function.

For example, the random coefficient model is compatible with Assumption 1. Recall

14The utility of the outside good may be different from 0 depending on the model specification.
For example, Gowrisankaran and Rysman (2009) let it be the utility of the good bought in the last
period.
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that the random coefficient utility can be written in the following way:

uijt = p′jtβ
p + z′jtβ

z + ξjt + p′jtβ
p
i + z′jtβ

z
i + eijt︸ ︷︷ ︸

εijt

Any general utility function can be rewritten as in (3) as long as εijt is dependent

on pjt, zjt and ξjt. It is the assumption of independence that makes Assumption 1

substantial. So Assumption 2 restricts the model in two ways, directly through the

distribution of εit as well as indirectly through Assumption 1.

Although the independence assumption imposes a restriction on the model and is

not compatible with the random coefficients model,15 I still allow for flexible substitu-

tion patterns among products, because I do not assume independence of εijt across j.16

Indeed the random coefficients model is often used to comply with flexible substitution

patterns across products by modeling unobserved heterogeneity on the coefficient pa-

rameters.17 Another way to allow for such a feature is suggested by Hausman and Wise

(1978) who introduce the conditional probit model. Each model has its own advan-

tage. For example, the conditional probit model generates more flexible substitution

patterns at the cost of a large number of parameters. Since I study a nonparametric

identification of the distribution of εit, including its transition, I pursue and generalize

the conditional probit model.

3 Identification of transition in preference shocks

We restrict our attention to temporal markets, t = 1, · · · , T , with T potentially grow-

ing.18 We are interested in identifying the mean utility function δ and the conditional

15The assumptions still allow for random coefficients on the characteristics that do not change across
markets, for example, dummies on the product categories.

16It is well known that substitution patterns implied by a model are very limited when the model
is specified with additive preference shocks independent across products. See Berry (1994) for a
discussion.

17See Quandt (1966) or McFadden (1976) for a detailed discussion of the random coefficients model.
18Alternatively there may be multiple geographic markets m = 1, · · · ,M , where M potentially

grows. In such a case, we only need T = 2 periods for each market. One may count on the theorems
in this paper for such a model, since the theorems can be easily converted.

8



distribution of εit given εi,t−1. This section contributes to the identification literature

by adding identification of the transition of idiosyncratic preference shocks. Previous

works focus on identification of a utility function and the contemporaneous distribution

of idiosyncratic preference shocks. Hausman and Wise (1978) propose an estimation

method for a parametric utility function in the discrete choice model. Ichimura and

Thomson (1998) offer a theorem on identification of a linear utility function with ran-

dom coefficients in the binary choice model, and Bajari, Fox, Kim, and Ryan (2009)

show that the distribution of random coefficients are nonparametrically identified in the

multinomial logit model with a linear utility function. While the above three papers

consider the model with individual purchase data, Berry (1994) and Berry, Levinsohn,

and Pakes (1995) propose an estimation method for a model with aggregated market

level data. Berry and Haile (2009) extend the model to one with a nonparametric

utility function and discuss its identification.

I show that transition in idiosyncratic preference shocks is identified with market

level data, if a market level variable on switching rates is available in addition to market

shares and observed characteristics of products. It is relatively easy to see that we can

reveal how idiosyncratic preference shocks evolve, given data on individual purchase

history. Once the utility function is identified, changes in the purchase pattern show

us how the unobserved preference shock evolves over time for an individual, examining

purchase patterns for all individuals allows us to trace out the conditional distribution

of εit and εi,t−1. On the other hand, market level data may not capture the behavior of

the same individual over time. Without any information on links between intertemporal

purchases, it would be impossible to identify any parameters governing the evolution

of the preference shocks.

If we observe a switching rate, however, it tells us how many people switch from

one good to other goods. This is obviously a market level variable, but there are several

levels of data available for the switching rate. The most detailed would be the complete

matrix of switching rates between all products. We may instead observe the matrix

of switching rates between groups of products, which is less detailed. An intermediate

level is the churn rate for each product. The churn rate tells us how many people who

purchased a good in the last period did not purchase the same good in the current

period. I count on the churn rate to identify the evolution of idiosyncratic shocks.
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Section 3.1 below introduces the identification equations. Section 3.2 addresses

non-identifiability and imposes some restrictions on the model. In Sections 3.3 and 3.4,

I propose two methods to identify the model.

3.1 Identification equations

In this subsection, I derive two identification equations and make an additional as-

sumption necessary for identification of transition in unobserved heterogeneity. The

identification equations define market shares and churn rates. Let us begin with the

market share equation. Denote market shares by st = (s0t, · · · , sJt)
′. Note that

st ∈ ∆J ⊂ RJ+1, where ∆J is the simplex of dimension J defined in the J + 1 di-

mensional Euclid space. The model described by Assumptions 1, 2, and 3 in the

previous section implies that for j = 1, · · · , J ,

sjt = P (uijt ≥ uikt ∀k)

= P
(
δ(pjt, zjt, ξjt) + εijt ≥ max(δ(pkt, zkt, ξkt) + εikt, ui0t) ∀k ≥ 1

)

= P (Ajt) (4)

where P is a probability measure of idiosyncratic preference shocks, and Ajt = {εit :

δ(pjt, zjt, ξjt) + εijt ≥ ui0t and δ(pjt, zjt, ξjt) + εijt ≥ δ(pkt, zkt, ξkt) + εikt for all k ≥ 1}
represents the event that product j is preferred to all the other products in market

t. Note that Ajt depends on (pt, zt, ξt) only through δ(p1t, z1t, ξ1t), · · · , δ(pJt, zJt, ξJt).

Assumptions 2 and 3 imply that P is independent of (pt, zt, ξt) and that P is identical

across t. Therefore P (Ajt) is a function of δ(p1t, z1t, ξ1t), · · · , δ(pJt, zJt, ξJt), ui0t and Fε

only. Define the function σj : RJ → [0, 1] so that

sjt = P (Ajt) =: σj

(
δ(p1t, z1t, ξ1t), · · · , δ(pJt, zJt, ξJt); ui0t, Fε

)

Stack the equations and rewrite as

st = σ
(
δ(p1t, z1t, ξ1t), · · · , δ(pJt, zJt, ξJt); ui0t, Fε

)
(5)

where σ : RJ → ∆J . This equation is used to identify the utility function δ and the

distribution Fε of εit. Denote δjt = δ(pjt, zjt, ξjt) for simplicity, and δt = (δ1t, · · · , δJt)
′;

then we can write st = σ(δt; ui0t, Fε). It is obvious from (4) that

σ(δt + c; ui0t + c, Fε) = σ(δt; ui0t, Fε)
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for any c ∈ R, and thus I normalize at ui0t = 0 as in (2). ui0t and Fε are included in

the arguments to explicitly show dependence of σ on those, but I will sometimes omit

either of them or both for simplicity.

Note that there is a one-to-one relationship between Fε and σ. It implies that

once we identify σ, we can find the distribution Fε of εit whether δ is identified or not.

It is obvious from (4) and (5) that σ is uniquely determined given Fε. The following

lemma shows that the converse is also true.19

Lemma 1 Every σ is associated with only one Fε.

Proof. We need to show that the function Fε is uniquely determined given σ. Take

any e ∈ RJ . Let δ = −e. Now observe that

Fε(e) = P (ε ≤ e)

= P (ε1 ≤ −δ1, · · · , εJ ≤ −δJ)

= P (δj + εj ≤ 0 ∀j ≥ 1)

= σ0(δ1, · · · , δJ)

= σ0(−e)

where the second last equality holds since P (δj + εj ≤ 0 ∀j ≥ 1) is the probability that

the utility of buying nothing is greater than that of all the other goods, so must be

equal to the share of the outside good when the mean utilities are given by δ1, · · · , δJ ,

which is σ0(δ1, · · · , δJ). Thus when we know the function σ completely, we can trace

out Fε.

The next identification equation uses the churn rate. Let hjt be the rate at which

people who bought product j at time t − 1 switch out of product j at time t. It is

therefore defined as follows:

hjt = P (∃k 6= j such that uijt < uikt | uij,t−1 ≥ uik,t−1 ∀k)

This could be rewritten as

1− hjt = P (uijt ≥ uikt ∀k | uij,t−1 ≥ uik,t−1 ∀k) (6)

19Berry and Haile (2009) employ the same idea in the proof of their Theorem 2.
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where P is now a probability measure of idiosyncratic preference shocks over two

periods. In order to have enough observations for identification I assume that P does

not vary over time. Denote the joint distribution of εit and εi,t−1 by F t,t−1
ε .

Assumption 4 (Invariance) F t,t−1
ε is the same over t.

Under Assumption 4, P is invariant over time, and thus (6) can be used to identify

P , or equivalently F t,t−1
ε . Assumption 4 also implies that the marginal distribution F t

ε

of εit is the same with F t−1
ε of εi,t−1, since when F t,t−1

ε is the same with F t+1,t
ε , their

marginal distributions also have to coincide. Therefore this assumption is consistent

with Assumption 3.

3.2 Non-identification and normalization

The model is not identified using the identification equations and the assumptions

described so far. This subsection shows that some normalization assumptions are

necessary for identification. It helps identify the model to define a more general form

of the share function as follows:

S(pt, zt, ξt; δ, Fε) := σ(δ(p1t, z1t, ξ1t), · · · , δ(pJt, zJt, ξJt); Fε) (7)

Note that S : RJ
+×RJ(G+1) → ∆J implicitly depends on δ and Fε and that S is uniquely

determined given δ and Fε. We may write st = S(pt, zt, ξt) for simplicity. Note also

that there is no one-to-one relationship between S and Fε as there is between σ and

Fε. This becomes apparent after we prove non-identification of the model (5) below.

In (5), the observables are {st, pt, zt}T
t=1, while {ξt}T

t=1 and the functions δ, σ and

Fε are unobserved. The model is not identified. To see this, simply fix the series

{ξt}T
t=1, and consider any strictly increasing and invertible H : R→ R. Let

δ̃ = H ◦ δ

σ̃(δt) = σ(H−1(δ1t), · · · , H−1(δJt))

12



and let Fε̃ defined correspondingly by Lemma 1. Then

σ̃(δ̃(p1t, z1t, ξ1t), · · · , δ̃(pJt, zJt, ξJt))

=σ(H−1(δ̃(p1t, z1t, ξ1t)), · · · , H−1(δ̃(pJt, zJt, ξJt)))

=σ(δ(p1t, z1t, ξ1t)), · · · , δ(pJt, zJt, ξJt))

implies that both (δ, σ, Fε) and (δ̃, σ̃, Fε̃) satisfy (5), and thus they are observationally

equivalent.20 To put a different way, δ̃ and ε̃ with a distribution function Fε̃ generate

the observationally equivalent equation. To find a way to normalize the functions, I

derive an equation that shows the relationship between Fε and Fε̃ as follows. The proof

of Lemma 1 establishes that Fε = σ0(−e) for any e ∈ RJ , which implies that

P (ε̃ ≤ e) = Fε̃(e)

= σ̃0(−e)

= σ0(H
−1(−e1), · · · , H−1(−eJ))

= Fε(−H−1(−e1), · · · ,−H−1(−eJ))

= P (ε1 ≤ −H−1(−e1), · · · , εJ ≤ −H−1(−eJ))

= P (−ε1 ≥ H−1(−e1), · · · ,−εJ ≥ H−1(−eJ))

= P (H(−ε1) ≥ −e1, · · · , H(−εJ) ≥ −eJ)

= P (−H(−ε1) ≤ e1, · · · ,−H(−εJ) ≤ eJ)

This equation says that if ε̃it is defined by ε̃ijt := −H(−εijt), and the utility function

is given by

ũijt = δ̃(pjt, zjt, ξjt) + ε̃ijt = H(δ(pjt, zjt, ξjt))−H(−εijt)

the observed market shares would be

st = σ̃(δ̃(p1t, z1t, ξ1t), · · · , δ̃(pJt, zJt, ξJt))

= σ(δ(p1t, z1t, ξ1t), · · · , δ(pJt, zJt, ξJt))

which is the same as those when the utility function is given by

uijt = δ(pjt, zjt, ξjt) + εijt

20This example shows why there is no one-to-one relationship between S and Fε. Both Fε and Fε̃ are
compatible with the same function S to generate observationally equivalent equation st = S(pt, zt, ξt).
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The observational equivalence between (δ, ε) and (δ̃, ε̃) leads us to make a normalization

on either of the two. I make the following normalization on the distribution function

of εit.

Assumption 5 (Normalization) The joint distribution Fε is such that the marginal

distribution of εi1t is known.

Remark 1 We can also make a normalization assumption on the functional form of δ,

by placing a restriction on δ so that any δ̃ = H(δ) with a strictly increasing H violates

it. A sufficient condition under which (δ, σ, Fε) is uniquely identified given {ξt}T
t=1

is that there exists a set B ⊂ RG × R+ × R satisfying the following two conditions.

δ(z, p, ξ) is known for all (z, p, ξ) ∈ B, and the image of B is the same as the image

of the whole domain, or in other words, δ(B) = δ(RG × R+ × R). Then choosing

B is a normalization assumption. If we assume δ(p, z, ξ) = ξ for some (p, z), for

example, B := {(p, z, ξ) : ξ ∈ R} would satisfy the above condition and uniquely

identify (δ, σ, Fε). This is a strong assumption to make when we want to know what

kind of assumption is sufficient to uniquely identify (δ, σ, Fε). On the other hand,

making as weak an assumption on δ as possible leaves the assumption unintuitive or

too complicated.

Given the above five assumptions on idiosyncratic preference shocks, we are able

to identify (δ, σ, Fε) from (5) given {ξt}T
t=1. But the model is still not identified without

information on {ξt}T
t=1. There are two issues regarding the unobserved characteristics.

One relates to their unit of measurement. Given (δ, σ, Fε, {ξt}T
t=1), we can always find

some σ̃ such that for some strictly increasing and invertible H : R→ R,

σ̃(δ(p1t, z1t, H(ξ1t)), · · · , δ(pJt, zJt, H(ξJt)))

=σ(δ(p1t, z1t, ξ1t), · · · , δ(pJt, zJt, ξJt))

Define ξ̃jt := H(ξjt) and let Fε̃ defined by σ̃ from Lemma 1, then (δ, σ, Fε, {ξt}T
t=1) is

observationally equivalent to (δ, σ̃, Fε̃, {ξ̃t}T
t=1).

The other issue arises from the endogeneity of ξt in the model (5). Since we inter-

pret ξt as a characteristic of products, it is likely that they are correlated with product

14



prices. I will take two different approaches to correct for endogeneity in the follow-

ing two subsections. One approach is to use instrumental variables. Its application

is easy, but it is difficult to find instruments satisfying the identification assumption

in a nonparametric model. When the utility function is specified parametrically, the

condition for identification can usually be written in terms of the rank of a matrix. It

is thus easy to check validity of instruments. In a nonparametric model, however, the

identification assumption with instrumental variables is not easy to check.

The second approach is to add a set of equations from which prices are determined.

This is more complete than the first approach, and more efficient if the additional equa-

tions are specified correctly. Thus there is no reason why we do not add equations if

we can. It has some flaws on the other hand. If the additional equations are mis-

specified, the estimates might be inconsistent. Moreover, this approach may require

some additional variables used for the new set of equations. When we do not have

enough number of exogenous variables which directly enter the new set of equations,21

the former method would be useful.

3.3 Using demand model only

In this subsection, I use only the models (5) and (6) and take an instrumental variables

approach to address the endogeneity between price and the unobserved characteristic

of products. Assume zjt ∈ R for simplicity. For the general case zjt ∈ RG, we only

need to assume that the additional G− 1 variables are independent of the unobserved

characteristics across all products within a market. As mentioned in Section 3.2, the

measurement unit of the unobserved characteristics has to be specified. I follow Berry

and Haile (2009) for such an assumption.

Assumption 6 (Measure of Unobserved Characteristic)

δ(pjt, zjt, ξjt) = δ(pjt, zjt + ξjt) (8)

and δ is strictly increasing in its second argument.

21We need at least the same number of exogenous variables as that of unobserved endogenous
variables. As adding the new set of equations often increases the number of unobserved endogenous
variables, we may need more exogenous variables to do so.
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This assumption specifies the measurement unit of ξjt but also restricts the func-

tional form of δ. Although it is not the weakest assumption required to identify ξjt,

it has a clearer interpretation. I abuse a notation and use δ for the new mean utility

function again. Since σ is invertible, we can write the equation (5) as

σ−1(st) =
(
δ(p1t, z1t + ξ1t), · · · , δ(pJt, zJt + ξJt)

)′

Taking element-wise inversion with respect to the second argument of δ yields

zjt + ξjt = δ−1
(
[σ−1(st)]j, pjt

)

Defining γj(st, pjt) := δ−1([σ−1(st)]j, pjt), we have

zjt + ξjt = γj(st, pjt) (9)

The series ξjt and γ are unknown in the above equation. Since pjt is endogenous with the

unobservable ξjt, instrumental variables are necessary to identify γ. Let wjt denote the

set of variables including all the exogenous and the instrumental variables. Importantly,

zjt is included in wjt. Then I make the following identification assumptions.

Assumption 7 (Strong Instrument) There exists wjt which includes zjt in it such

that for any function B : ∆J ×R+ → R with a finite expectation, E[B(st, pjt)|wjt] = 0

a.e. implies B(st, pjt) = 0 a.e.

Assumption 8 (Mean Independence) E[ξjt|wjt] = 0

Assumptions 7 and 8 specify the conditions which must be satisfied by the instru-

mental variables. Assumption 7 is made in accordance with Newey and Powell (2003),

and Berry and Haile (2009). It is strong because it requires that we need instrumental

variables with nearly perfect information on the movement of the price as well as the

share. Intuitively, given some instrumental variables, we still have to observe a lot of

joint variation in the price and the share on a large support. In addition, changes in

instrumental variables must be associated with changes in the distribution of the price

and the share in a nontrivial way. Its counterpart in a linear model is that instruments

must be non-orthogonal to endogenous variables.
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Newey and Powell (2003) provide some theorems by which this condition holds.

For example, if the price, in our context, is distributed normally conditional on some

instruments, the identification assumption can be converted into a rank condition.

Another example is the case where both the price and the instruments have finite

support and satisfy some rank condition. We can see a similar but weaker assumption

in Chernozhukov and Hansen (2005), Chernozhukov, Imbens, and Newey (2007), and

Berry and Haile (2010). The last assumption plays the role of location normalization

of ξjt in addition. In conjunction with Assumption 6, it restricts the way unobserved

characteristics are distributed.

Let Ej be the support of the marginal distribution of εijt. From the identification

equations and the assumptions described so far, we have the following theorem.

Theorem 1 Suppose Assumptions 1-8 hold. Assume further that the data (st, ht, pt, zt)

are available for all st ∈ ∆J . Then the unobserved characteristic {ξt}T
t=1 is identified,

and the utility function δ(pjt, zjt + ξjt) is nonparametrically identified on the inverse

image of −E1. Also the joint density function f t,t−1
ε of εit and εi,t−1 is identified on

E2J
1 . Especially, F t,t−1

ε is fully identified if E1 contains Ej for all j.

Proof. Recall Equation (9).

zjt + ξjt = γj(st, pjt)

By taking a conditional expectation on both sides we get

E[zjt + ξjt|wjt] = E[γj(st, pjt)|wjt]

E[zjt|wjt] = zjt since wjt includes zjt. Then it follows from Assumption 8 that

zjt = E[γj(st, pjt)|wjt]

Assumption 7 implies that γj(st, pjt) is identified from the above equation.22 Once

γj is identified for all j, (9) identifies ξt. So we can identify S from st = S(pt, zt, ξt)

for all (pt, zt, ξt). Since the conditions of Lemma 2 are satisfied, the utility function

δ(pjt, zjt +ξjt) is identified on the inverse image of −E1, and the joint distribution Fε is

identified on EJ
1 . Also since the conditions of Lemma 3 are satisfied, it follows that the

22See Berry and Haile (2009) for the proof of identification using this assumption.
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joint density function f t,t−1
ε of εit and εi,t−1 is identified on E2J

1 . If E1 contains Ej for

all j, f t,t−1
ε is fully identified since E2J

1 contains the whole support of f t,t−1
ε . Therefore,

F t,t−1
ε (e) can be obtained by integrating f t,t−1

ε (e) up to e.

While the formal statements of Lemmas 2 and 3 and their proofs are given in the

Appendix, an illustrative example is offered here. Suppose we have only one good with

characteristics (pt, zt, ξt). Consumers would buy it if δ(pt, zt + ξt) + εit ≥ 0, and not

buy otherwise. The share would be determined by

st = Pr(δ(pt, zt + ξt) + εit ≥ 0) = 1− Fε(−δ(pt, zt + ξt))

Since Fε(·) is known, we have

−F−1
ε (1− st) = δ(pt, zt + ξt) (10)

If pt were independent of ξt, we would have been able to identify δ and ξt without

Assumption 7 using the above equation. To account for endogeneity of ξt we must take

the following steps. Since δ is strictly increasing in its second argument, we can take

an inversion of δ with its second argument and write

zt + ξt = δ−1(−F−1
ε (1− st), pt) =: γ(st, pt) (11)

Taking a conditional expectation and appealing to Assumption 7 leads to identification

of γ. The series ξt can be identified from Equation (11), and δ from Equation (10).

Now the joint distribution of εit and εi,t−1 is identified from the churn rate.

ht = P (δ(pt, zt + ξt) + εit ≤ 0|δ(pt−1, zt−1 + ξt−1) + εi,t−1 ≥ 0)

Arranging the equation yields

htst−1 = P (εit ≤ −δ(pt, zt + ξt) and − εi,t−1 ≤ δ(pt−1, zt−1 + ξt−1))

Since δ and ξt are already identified, the above equation tells us the joint distribution

of εit and εi,t−1.

The above example shows which set the utility function δ is identified on. The left

hand side of (10) ranges on −E, the mirror image of the support of εit. So the utility

function δ is identified only at the points which are mapped into −E by δ, or simply
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on the inverse image of −E. Extending such an idea to a general case of J ≥ 2, δ is

identified on the inverse image of −E1 from the known marginal distribution of εi1t.

When Ej is the same across j, this result leads to full identification of the distribution

of εit as well as its transition. They might be partially identified if Ej is different

across j, but there is a quick remedy to such a case as follows. If the mean of εijt

is different across j, we can make the means identical by including additive product-

specific dummy variables in the utility function. If the spread of εijt is different across

j, we can take the product with the largest support and rename it to product 1. Such

a product can be found by observing the distribution of shares since its share would be

more dispersed than that of other products. Then E1 contains Ej for all j now, and

Theorem 1 guarantees that the distribution of εit and its transition are fully identified.

3.4 Adding supply side model

This subsection uses a simultaneous equations model to address the endogeneity issue

and identify the model. Recall that Assumptions 1-3 imply the following equations on

the demand side.

st = S(pt, zt, ξt) = σ(δ(p1t, z1t, ξ1t), · · · , δ(pJt, zJt, ξJt)) (12)

The market shares are determined given pt, zt and ξt. But the prices are set by firms

considering all the characteristics of the products on the market, so we are concerned

that pt must be correlated with ξt. I add equations specifying the price decision,

and formulate a simultaneous equations model. The additional equations give us full

information about how the price is correlated with the unobserved characteristics of

products, and thus eliminate implicitness of endogeneity. If the model is correctly

specified, this method would be more efficient than the previous one-side model. I still

assume that zjt ∈ R. The equilibrium prices can be determined in general by

pt = ρ(zt, ξt, wt, ηt) (13)

where wt and ηt are vectors of observed and unobserved cost factors, respectively. I

assume wjt ∈ R and ηjt ∈ R, but the model can be easily extended to a more general

case with wjt ∈ RK .
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There are a couple of remarks that need to be mentioned about the specification

in (13). It is less structural than that on the demand side. For a more structural

way, we may define a cost function and specify a form of the game firms are playing.23

However I focus on the identification of consumer’s switching behavior on the demand

side, rather than on that of cost functions. So I employ a more flexible specification to

comply with a broad set of cost functions and forms of the competition.

By the above specification, I assume that there exists a set of equilibrium prices

given zt, ξt, wt, and ηt. Each firm has its own equation for price decision to maximize

its profit. We have J best response equations and J prices, so the assumption of

the existence of equilibrium prices is reasonable. Note that the equilibrium price pjt

depends on the characteristics and cost factors of other products as well as its own.

When setting price, a firm considers the characteristics and price of other products

because they will affect demand for its own product through (12). Therefore every best

response equation is written in terms of all the prices p1t, · · · , pJt, and the solution pt to

the system of equations depends on the characteristics and cost factors of all products,

not just its own.

A unique equilibrium is not guaranteed, but is also not required in this analysis.

It suffices that there exists a function satisfying (13). However we need a condition

that the same equilibrium price function is used over time. This does not only require

that the same equilibrium prices are chosen when the firms face the same zt, ξt, wt,

and ηt, but also that the type of the game firms are playing does not vary over time.

For example, suppose firms chose their price and quantity via the Cournot Nash game

in the beginning of the industry. If one of the firms became larger than the others

for some reason, and they switched to the Stackelberg leader game at some point, the

condition of an invariant form of competition fails and (13) may not be used. In such

23For example, assume that a cost function is given by C(sjt, zjt, ξjt, wjt, ηjt) and that firms compete
by price. A first order condition is

sjt + [pjt − C ′(sjt, zjt, ξjt, wjt, ηjt)]
∂sjt

∂pjt
= 0

Since sjt depends on pt, zt and ξt, a profit maximizing price is pjt = ψ(p−jt, zt, ξt, wjt, ηjt). If this
function is used instead of (13), a less restrictive assumption on ψ is required for identification than
is imposed on ρ later. Apparently, one needs to choose between making assumptions on the structure
or on the resulting function.
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a case, if we have information as to when the competition scheme changes, we may use

a more structural model with a specific form of the competition scheme.

Following the approach in Matzkin (2008, 2010a), we can express the unobserved

terms as a function of observed variables by inverting Equations (12) and (13). Some

assumptions on the functions are required for invertibility. Abuse a notation and let

δ be the vector argument of the function σ, so δ is a J × 1 vector when it is written

without the arguments (pjt, zjt, ξjt). Let σj denote the j-th coordinate of the function

σ, and δj denote the j-th argument of the function σ.

Assumption 9 The utility function δ(pjt, zjt, ξjt) is differentiable and such that

∂δ

∂zjt

(pjt, zjt, ξjt) =
∂δ

∂ξjt

(pjt, zjt, ξjt) > 0

for all (pjt, zjt, ξjt) and all j, and the matrix

∂σ

∂δ′
(δ) :=




∂σ1

∂δ1
(δ) · · · ∂σ1

∂δJ
(δ)

...
. . .

...
∂σJ

∂δ1
(δ) · · · ∂σJ

∂δJ
(δ)




is positive definite for all δ ∈ RJ .

The differentiability of the share function σ(δt) is guaranteed by Assumption 3

that the density of εit is absolutely continuous. The first part of Assumption 9 specifies

the measure of the unobserved characteristic as Assumption 6 does. The second part

requires that changes in the characteristics and price of a product must have a higher

impact on its own share, than on the share of the other products. To see this, consider

the 2-good example. The matrix becomes(
∂σ1

∂δ1
(δ) ∂σ1

∂δ2
(δ)

∂σ2

∂δ1
(δ) ∂σ2

∂δ2
(δ)

)

For this to be a positive definite matrix, it has to be the case that

∂σ1

∂δ1

(δ) > 0

∂σ2

∂δ2

(δ) > 0

∂σ1

∂δ1

(δ)
∂σ2

∂δ2

(δ)− ∂σ1

∂δ2

(δ)
∂σ2

∂δ1

(δ) > 0
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The first and second lines follow immediately from Assumption 3 and Equations (4)

and (5), which also imply that ∂σ2

∂δ1
(δ) < 0 and ∂σ1

∂δ2
(δ) < 0. The last line holds if ∂σ1

∂δ1
(δ) >

−∂σ2

∂δ1
(δ) and ∂σ2

∂δ2
(δ) > −∂σ1

∂δ2
(δ), which means that changes in the characteristics and

the price of good 1 move its share more than the share of good 2, and vice versa. This

holds trivially when there are two products, since the share of the outside good would

decrease when there is an increase in δ1 with δ2 unchanged.

As the number of products increases, we need more inequalities to hold, but

the logic is similar. When there are many products, it is likely that there is less

competition between any two products, and thus changes in the characteristics of a

product may have less impact on the share of each of the other products. A different

substitution pattern may appear if
∂σj

∂δj
(δ) < −∂σk

∂δj
(δ). Assumption 9 allows for such a

possibility as long as it is not different too much from an usual pattern in the sense that
∂σj

∂δj
(δ)∂σk

∂δk
(δ)− ∂σj

∂δk
(δ)∂σk

∂δj
(δ) > 0 still holds. This ensures that every principal minor of

size 2 has a positive determinant. Conditions for a bigger size of principal minors are

more complicated, but are not strong since the diagonal term is likely bigger in the

absolute value than the off-diagonal terms.

Given the second part of Assumption 9, we can invert the system of equations

(12) in terms of ξt. To see this, note

∂S

∂ξ′t
=




∂σ1(δ)
∂δ1

∂δ(p1t,z1t,ξ1t)
∂ξ1t

· · · ∂σ1(δ)
∂δJ

∂δ(pJt,zJt,ξJt)
∂ξJt

...
. . .

...
∂σJ (δ)

∂δ1

∂δ(p1t,z1t,ξ1t)
∂ξ1t

· · · ∂σJ (δ)
∂δJ

∂δ(pJt,zJt,ξJt)
∂ξJt




and thus

∣∣∣∣
∂S

∂ξ′t

∣∣∣∣ =

∣∣∣∣∣∣∣∣

∂σ1

∂δ1
(δ) · · · ∂σ1

∂δJ
(δ)

...
. . .

...
∂σJ

∂δ1
(δ) · · · ∂σJ

∂δJ
(δ)

∣∣∣∣∣∣∣∣

J∏
j=1

∂δ(pjt, zjt, ξjt)

∂ξjt

which is positive for all (pt, zt, ξt) by Assumption 9. Therefore S is invertible in ξt and

we can write

ξt = ξ(st, pt, zt) (14)

Moreover, it follows that ∂ξ
∂s′t

is also a positive definite matrix, which implies
∂ξjt

∂sjt
> 0

for all j.

22



The first part of Assumption 9 imposes a restriction on the structual inverse

function ξ defined in (14) as follows. Consider the identity

st = S(pt, zt, ξ(st, pt, zt))

Take a derivative of the above equation with respect to zt at a given (st, pt, zt),

0 =
∂S

∂z′t
(pt, zt, ξt) +

∂S

∂ξ′t
(pt, zt, ξt)

∂ξ

∂z′t
(st, pt, zt)

and thus
∂ξ

∂z′t
(st, pt, zt) = −

[
∂S

∂ξ′t
(pt, zt, ξt)

]−1
∂S

∂z′t
(pt, zt, ξt)

Assumption 9 implies that

∂S

∂zjt

(pt, zt, ξt) =
∂σ(δ)

∂δj

∂δ(pjt, zjt, ξjt)

∂zjt

=
∂σ(δ)

∂δj

∂δ(pjt, zjt, ξjt)

∂ξjt

=
∂S

∂ξjt

(pt, zt, ξt)

and thus that ∂S
∂z′t

= ∂S
∂ξ′t

. Therefore we have

∂ξ

∂z′t
(st, pt, zt) = −I (15)

and this holds for all (st, pt, zt). We can derive similar results by imposing similar

assumptions on the supply side.

Assumption 10 The equilibrium price function ρ is such that

∂ρk

∂zjt

(zt, ξt, wt, ηt) =
∂ρk

∂ξjt

(zt, ξt, wt, ηt)

∂ρk

∂wjt

(zt, ξt, wt, ηt) =
∂ρk

∂ηjt

(zt, ξt, wt, ηt) > 0

for all (zt, ξt, wt, ηt) and for all j and k, and the matrix

∂ρ

∂η′t
(zt, ξt, wt, ηt) :=




∂ρ1

∂η1
(zt, ξt, wt, ηt) · · · ∂ρ1

∂ηJ
(zt, ξt, wt, ηt)

...
. . .

...
∂ρJ

∂η1
(zt, ξt, wt, ηt) · · · ∂ρJ

∂ηJ
(zt, ξt, wt, ηt)




is positive definite for all (zt, ξt, wt, ηt).
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By the second part of Assumption 10, we can write

ηt = φ(pt, zt, ξt, wt).

Substitute ξt = ξ(st, pt, zt) into the above equation, and obtain

ηt = φ(pt, zt, ξ(st, pt, zt), wt) =: η(st, pt, zt, wt). (16)

Note that st and pt are endogenous observed variables and zt and wt are exogenous

observed variables. I first show that η does not depend on zt so we can use zt as

instruments for η. Taking a derivative of the identity

pt = ρ(zt, ξ(st, pt, zt), wt, η(st, pt, zt, wt))

with respect to zt at a given (st, pt, zt, wt) we get

0 =
∂ρ

∂z′t
(zt, ξt, wt, ηt) +

∂ρ

∂ξ′t
(zt, ξt, wt, ηt)

∂ξ

∂z′t
(st, pt, zt)

+
∂ρ

∂η′t
(zt, ξt, wt, ηt)

∂η

∂z′t
(st, pt, zt, wt)

=
∂ρ

∂z′t
(zt, ξt, wt, ηt)− ∂ρ

∂ξ′t
(zt, ξt, wt, ηt) +

∂ρ

∂η′t
(zt, ξt, wt, ηt)

∂η

∂z′t
(st, pt, zt, wt)

=
∂ρ

∂η′t
(zt, ξt, wt, ηt)

∂η

∂z′t
(st, pt, zt, wt)

where the second equality follows from (15), and the last follows by Assumption 10.

Since ∂ρ
∂η′t

(zt, ξt, wt, ηt) is invertible, we have

∂η

∂z′t
(st, pt, zt, wt) = 0 (17)

for all (st, pt, zt, wt). Taking a derivative of the above identity now with respect to wt

yields

0 =
∂ρ

∂w′
t

(zt, ξt, wt, ηt) +
∂ρ

∂η′t
(zt, ξt, wt, ηt)

∂η

∂w′
t

(st, pt, zt, wt)

The first part of Assumption 10 implies that

∂η

∂w′
t

(st, pt, zt, wt) = −I (18)
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Denote the endogenous variables by yt = (st, pt) and the exogenous variables by

xt = (zt, wt). Combine (14) and (16) to write

(
ξt

ηt

)
=

(
ξ(st, pt, zt)

η(st, pt, zt, wt)

)
=: r(st, pt, zt, wt) = r(yt, xt).

Note that ξ(st, pt, zt) is not a function of wt, so

∂ξ

∂w′
t

(st, pt, zt) = 0.

This together with Equations (15), (17), and (18) yields

∂r

∂x′t
(yt, xt) =

(
∂ξ
∂z′t

(st, pt, zt)
∂ξ

∂w′t
(st, pt, zt)

∂η
∂z′t

(st, pt, zt, wt)
∂η
∂w′t

(st, pt, zt, wt)

)
= −I.

Again, this condition is derived from assumptions on the measurement unit of unob-

served terms ξt and ηt. By linking the values of unobservables to those of observables,

we can fix the scale of the function we are interested in identifying.24 Given the above

condition, we can apply Theorem 3.1 in Matzkin (2010a) to identify the structural

inverse functions ξ and η. We need some regularity assumptions.

Assumption 11 (ξt, ηt) is independent of (zt, wt), and the density function f(ξ,η) of

(ξt, ηt) is everywhere positive and continuously differentiable.

Assumption 12 The density function f(z,w) of (zt, wt) is continuously differentiable

and for any (ξ, η) ∈ R2J and any (s, p) ∈ ∆J × RJ
+, there exists (z, w) such that

(ξ, η) = r(s, p, z, w).

Assumption 13 Conditional on (zt, wt), the function r is twice continuously differ-

entiable, 1-1, onto their support. Also there is a set of values (ξ, η, s, p, z, w) such that

(ξ, η) = r(s, p, z, w).

The following is the identification assumption.

24There are some other ways in which the measurement unit of unobserved variables are specified.
See Matzkin (2003, 2007).
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Assumption 14 The density f(ξ,η) of (ξt, ηt) is such that

• for some value (ξ∗, η∗),

∂ log f(ξ,η)

∂ξt

(ξ∗, η∗) =
∂ log f(ξ,η)

∂ηt

(ξ∗, η∗) = 0

• for each j = 1, · · · , J , there exist values (ξ∗j, η∗j) and (ξ∗∗j, η∗∗j) such that

∂ log f(ξ,η)

∂ξjt

(ξ∗jη∗j) 6= 0, and
∂ log f(ξ,η)

∂ηjt

(ξ∗∗j, η∗∗j) 6= 0

but
∂ log f(ξ,η)

∂ξkt

(ξ∗j, η∗j) =
∂ log f(ξ,η)

∂ηkt

(ξ∗∗j, η∗∗j) = 0

for all k 6= j and

∂ log f(ξ,η)

∂ηt

(ξ∗j, η∗j) =
∂ log f(ξ,η)

∂ξt

(ξ∗∗j, η∗∗j) = 0

While Assumption 14 is long, it is quite mild. It holds if there is a maximum of

the joint density function, and if, for any coordinate of unobserved variables, we can

find a value for which the joint density is maximized or minimized with respect to other

coordinates, while not with respect to it. For instance, there is a unique maximum

for the joint normal distribution. Also for any value of some coordinate, unless it is

the mean of the normal distribution, we can find a point where the joint density is

maximized with respect to other coordinates but not with respect to the coordinate.

If density functions are continuous on a closed support and vanish on the boundary,

this assumption is trivially satisfied. Exceptions include the uniform distribution and

the exponential distribution.

Let Ej be the support of the marginal distribution of εijt. I state the main theorem

as follows.

Theorem 2 Suppose Assumptions 1-5 and 9-14 hold. Assume further that the data

(st, ht, pt, zt, wt) are available for all st ∈ ∆J . Then the unobserved characteristics

{ξt}T
t=1, and the unobserved cost factors {ηt}T

t=1 are identified, and the utility function

δ(pjt, zjt, ξjt) is nonparametrically identified on the inverse image of −E1. Also the

joint density function f t,t−1
ε of εit and εi,t−1 is identified on E2J

1 . Especially, F t,t−1
ε is

fully identified if E1 contains Ej for all j.
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Proof. It is shown above that under Assumptions 1, 2, 3, 9, and 10, we can write the

simultaneous equations model
(

ξt

ηt

)
= r(yt, xt) =

(
ξ(st, pt, zt)

η(st, pt, zt, wt)

)

where yt = (st, pt) and xt = (zt, wt). It is verified that in the above model

∂r

∂x
(yt, xt) = −I

Under Assumptions 11-14, it follows from the proof of Theorem 3.1 in Matzkin (2010a)

that r and f(ξ,η) are identified. {ξt}T
t=1 and {ηt}T

t=1 are revealed from r, and thus

inverting ξ identifies the function S(pt, zt, ξt). Applying Lemma 2 under Assumptions

1, 2, 3, and 5, and the given condition on the support of st, the utility function

δ(pjt, zjt, ξjt) is identified on the inverse image of −E1, and the joint distribution Fε

is identified on EJ
1 . Now under Assumptions 1, 2, 3, and 4, Lemma 3 identifies the

joint density function f t,t−1
ε on E2J

1 . If E1 contains Ej for all j, f t,t−1
ε is fully identified

since E2J
1 contains the whole support of f t,t−1

ε . Therefore, F t,t−1
ε (e) can be obtained by

integrating f t,t−1
ε (e) up to e.

Although we are not interested in the equilibrium price function ρ, it is identified

as well. Once we obtain {ξt}T
t=1 and {ηt}T

t=1, all the variables in Equation (13) are

known. Identification and estimation of the function ρ immediately follows. As Theo-

rem 3.2 in Matzkin (2010a) provides a way to estimate the structural inverse function

r(st, pt, zt, wt), the functions S and ρ are easily estimated. Estimation of the utility

function δ and the distribution function F t,t−1
ε using r is left for a future project.

4 Identification of switching costs

In this section, I present the model where there is a switching cost when consumers

change products. For example, consumers may incur learning costs when they in-

vestigate new products.25 When a subscription is required, there could be an initial

25Although we usually assume consumers have full information about all products, in reality they
may not have full information about products they have not purchased recently. Modeling incomplete
information is technically difficult, but we may approximate such a model by introducing a switching
cost, where part of the switching cost is incurred from uncertainty about other products.
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installment fee, a quitting fee, or both. Non-monetary costs from beginning a subscrip-

tion or quitting it are also included. If there is a long-term contract with a cancellation

fee, such a fee is also considered a switching cost. In some industries, using a service

requires buying a product-specific equipment. Then switching consumers need to buy

a new equipment, which is an additional switching cost.

Selecting which type of costs are included in switching costs has implications

for my model, because different types of switching costs affect consumers’ choices in

different ways. Modeling all possible switching costs is not desirable considering the

cost of increasing complexity in computation. In this paper, I assume that there

exists a simple switching cost which is incurred whenever a consumer discontinues a

subscription to some service. The other type of switching costs are not considered in

the model. There are several reasons why I choose this model.

Since we use the churn rate, which is the proportion of people who quit from a

service, modeling the quitting cost directly utilizes such data most efficiently. Although

various type of switching costs affect consumers’ decisions, the model with a quitting

cost can approximate the effect of those costs to some extent. For example, If most

people who quit from a service subscribe to another, the quitting cost would capture a

high portion of the initial installment fee and the cost of buying new equipment.26 Also

those costs are observed relatively well so their identification is not so much an issue

as that of unobserved switching costs. If we want to find an effect of those observed

costs, we can simply run a reduced form regression. On the other hand, the quitting

cost is pretty unknown, which we suspect has a hidden effect on estimation.27

Let ckt denote a quitting cost that consumers pay when discontinuing a subscrip-

tion to product k at time t. Note again that although we refer to ckt as a quitting

cost, it includes other costs of switching as well. If switching costs are interpreted

26The cancellation fee is different from other fees in that it affects long-term decisions. Consumers
who engaged in a long-term contract are those who think that making a long-term contract with a
less initial setup cost is expected to yield higher utility than paying a high initial setup cost. For those
people, the cancellation fee would have a less impact on their choice on average than the initial cost
or the quitting cost.

27A model with an unknown initial setup cost is indeed as computationally difficult as one with
an unknown quitting cost. But as mentioned, most of such costs are known, so the model with an
unknown quitting cost is conceptually more reasonable.
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monetarily, a consumer gets a utility δ(pjt − ckt, zjt, ξjt) + εijt when switching from k

to j. Even this model is not easy to identify due to nonlinearity of the utility function.

Thus we need to impose more assumptions. Rather than appealing to unintuitive as-

sumptions on the shape of the utility function, I assume that the switching cost enters

the utility function in an additively separable way. The following assumption replaces

Assumption 1.

Assumption 15 (Additive Switching Cost) The utility function is given by

uijt =

{
δ(pjt, zjt, ξjt)− ckt + εijt when i purchased k 6= j, 0 at t− 1

δ(pjt, zjt, ξjt) + εijt otherwise

We may simply write δjt := δ(pjt, zjt, ξjt) as in Section 3. Then, the utility is

uijt = δjt − ckt + εijt if i bought k 6= j, 0 in the previous period, and is uijt = δjt + εijt

otherwise. The equation specifying the shares of products is different from (5), since the

shares at t now depend on the shares at t− 1. Without switching costs, all consumers

have the same choice probabilities ex ante, regardless of which product they purchased

in the previous period. But when there are switching costs, two consumers may choose

a different product depending on their purchase history even though they draw the

same idiosyncratic preference shocks.

Ideally this calls for modeling a dynamic decision of consumers since they would

consider the effect of their current decision on their future utility. However we restrict

our attention to a static model for tractability. A dynamic model requires an analysis

of value functions. While it is estimable, its identification is mathematically more

demanding, and therefore I consider a static decision of switching in this paper. There

are a couple of ways to relate a static model to a dynamic model. A static model is

a dynamic model with impatient or myopic consumers. In another viewpoint, it may

be regarded as an approximation to the dynamic model with patient consumers by

assuming that the static utility function captures a part of expected future utility.28

28Berry, Levinsohn, and Pakes (1995) use such an approximation. They use a static utility model
for an analysis of the automobile market. Although consumers pay today but can use a car for several
years, or sell their old car and buy a new one, the expected utility of all such behaviors is captured
in the static utility function in their model. See Schiraldi (2008) for a dynamic treatment with the
automobile industry.
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In this sense, the static decision model presented in this paper has an implication,

although imperfect and limited, on the importance of switching costs.

Consider the consumer who purchased product k in the last period. She would

have the set of potential utilities

(δ1t−ckt+εi1t, · · · , δk−1,t−ckt+εi,k−1,t, δkt+εikt, δk+1,t−ckt+εi,k+1,t, · · · , δJt−ckt+εiJt)

with the utility for the outside good ui0t = −ckt. Assuming that her εit is independent

of εi,t−1, the fact that she bought k in the last period does not provide any information

on the distribution of εit. Therefore, the ex ante probability that she buys products

1, · · · , J is given by

σ(δ1t − ckt, · · · , δk−1,t − ckt, δkt, δk+1,t − ckt, · · · , δJt − ckt|ui0t = −ckt)

or simply

σ(δkt, δqt − ckt ∀q 6= k|ui0t = −ckt)

which is a vector-valued function. Its j-th coordinate is the probability that she buys

product j at t given that she bought product k at t− 1. Thus it is a rate of switching

to j for consumers who bought k at t − 1. We can derive similar expressions for

consumers who purchased products 1, · · · , J in the last period. In addition, the choice

probabilities for consumers who purchased nothing in the last period is simply σ(δt),

since there is no initial setup cost in this model. Using the shares at t − 1 with the

conditional purchase probabilities derived above, we have the following equation for

the share at t.

sjt =
J∑

k=1

σj(δkt, δqt − ckt ∀q 6= k|ui0t = −ckt)sk,t−1 + σj(δt)s0,t−1 (19)

The conditional purchase probability implies the equation for the churn rate as well.

Since the churn rate hjt is the rate at which people who bought product j at time t−1

switch out of product j at time t,

hjt = 1− σj(δjt, δqt − cjt ∀q 6= j|ui0t = −cjt)

or equivalently,

1− hjt = σj(δjt, δqt − cjt ∀q 6= j|ui0t = −cjt) (20)

Equations (19) and (20) for j = 1, · · · , J are the identification equations. I present a

theorem on identification of switching costs using the following assumptions.
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Assumption 16 (Distribution) εit is independent and identically distributed over i

and t. It is absolutely continuously distributed, and the support of the density function

is connected. The joint distribution of εit is known, and denoted by Fε.

Assumption 17 There exists wjt which includes zjt in it such that for any function B :

R×R+ → R with a finite expectation, E[B(δjt, pjt)|wjt] = 0 a.e. implies B(δjt, pjt) = 0

a.e.

Assumption 16 replaces Assumptions 3 and 5. The new assumption is stronger,

but if the independence assumption does not hold, the equations for the market shares

and the churn rates become intractable. I will discuss such a case later in this section.

Assumption 17 replaces Assumption 7. This is a weaker assumption. Note that if the

utility function is specified parametrically, this condition can be written in terms of

the rank of a matrix.

Theorem 3 Suppose Assumptions 2, 15, 16 hold. Then the switching costs {ct}T
t=2 are

identified. If Assumptions 6, 8, and 17 hold in addition, the unobserved characteristics

{ξt}T
t=2, and the utility function δ(pjt, zjt + ξjt) are identified.

Proof. It follows from Assumptions 2, 15, and 16 and Lemma 4 that there exists a

unique set of {(δt, ct)}T
t=2 that satisfies (19) and (20). Once {(δt, ct)}T

t=2 is identified,

we observe {(δt, pt, zt)}T
t=2 from the set of equations

δjt = δ(pjt, zjt, ξjt) = δ(pjt, zjt + ξjt)

for all j and t = 2, · · · , T . We can identify the utility function δ and ξjt following

the same procedure used in the proof of Theorem 1. In other words, we invert the

function with respect to its second argument and take a conditional expectation, then

by Assumption 8,

E[δ−1(δjt, pjt)|wjt] = E[zjt + ξjt|wjt] = zjt

Assumption 17 identifies the function δ−1, and thus ξjt is identified from

ξjt = δ−1(δjt, pjt)− zjt
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for all j and t = 2, · · · , T . Now we have {(δt, pt, zt, ξt)}T
t=1, so the utility function δ is

obtained easily.

Two results immediately follow. The first is that a model with a uniform switching

cost across products is trivially identified given Theorem 3 since it is a special case of

the above model where the switching cost is different across products. The model with

product-specific switching costs is more useful if we are interested in a firm’s incentive

to raise the quitting cost for consumers, while the model with a uniform switching

cost might suffice to examine the welfare effect of economic policies for quitting costs.

An extreme case would be a model with a constant switching cost over time, which

is also identified. The second is that the parametric utility function is identified.

Given that {δt}T
t=2 are revealed, and that there exist a set of appropriate instrumental

variables, using the generalized method of moments identifies the parameters in the

utility function. This approach is applied to the estimation of a linear utility function

using the U.S. mobile phone service industry data in Section 5.

With a known distribution of idiosyncratic preference shocks, mean utilities {δt}T
t=2

and switching costs {ct}T
t=2 are easily identified. For example, when the preference

shocks are given by logit errors, the mean utilities and the switching costs are obtained

from the contraction mapping. Berry, Levinsohn, and Pakes (1995) show a contraction

mapping identifies {δt}T
t=1 in the random coefficients logit model without switching

costs. A simple application of their theorem shows that given {δt}T
t=2, the switching

costs {ct}T
t=2 are identified using the same sort of contraction mapping. This implies

that we can use a double-layered contraction mapping to obtain {δt}T
t=2 and {ct}T

t=2.

Unfortunately, it is not proven that the mapping on {δt}T
t=2 is also a contraction of

modulus less than one. This is because the switching costs are implicitly a function

of mean utilities, so the second part of Condition (1) in their theorem is not easily

verified. However, in the estimation with the U.S. mobile phone service industry data,

the contraction mapping always converges to a point and the difference between the

mean utilities over iterations decreases as the mapping is applied repeatedly.

Finally I make technical remarks on identification of the model with serial corre-

lation of idiosyncratic preference shocks in addition to switching costs. With switching

costs, consumers with the same preference shocks εit make a different choice depending

on what they purchased at t− 1. This implies that sjt cannot be characterized by the
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probability space generated by εit. This is why we need to write the share equation in

the following way.

sjt = P (i buys j at t) =
J∑

k=0

P (i buys j at t|bought k at t− 1)sj,t−1

Without independence, P (i buys j at t|bought k at t − 1) cannot be simplified.29 In

fact, it is not characterized by the probability space generated by εit and εi,t−1 for

the same reason as above. We need information from t − 2, which in turn requires

information from t − 3. The backward reference continues infinitely, and we end up

with an equation with an infinite sum. Hence the mathematical identification of such

a model seems infeasible.

5 Application to the U.S. mobile service industry

I show in this section that inclusion of switching costs is necessary for consistent es-

timation by applying the model in Section 4 to empirical estimation of the utility

function for a mobile phone service in the United States. The data come from two

Global Wireless Matrix reports on the mobile phone service industry by Merrill Lynch.

One contains data from 1999 Q1 to 2004 Q2, and the other from 2005 Q1 to 2007 Q4

allowing the analysis to span 34 quarters over 9 years. Although the reports are global,

in this study I focus on the United States. This is because demand functions may vary

across countries, and because different regulation policies and the resulting competition

patterns may potentially affect the estimation. The different policies may also generate

different distributions of the unobserved characteristics that the estimation procedure

crucially depends on.

The first report provides data on the six leading firms, while the second report

contains data on the four leading firms. This is due to two big mergers and acquisitions

among the first six leading firms which occurred between late 2004 and early 2005.30

29An AR(1) assumption fails to simplify the expression.
30The U.S. government approved the acquisition of AT&T Wireless by Cingular Wireless on Oct.

26th, 2004. Sprint and Nextel merged to form Sprint Nextel which was approved by The Department
of Justice on Aug. 3rd, 2005.
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There are more than a hundred mobile phone service providers in the United States,

but the top six firms accounted for 72% of the total share in 1999, and the top four

firms accounted for 80% of the total share in 2007. Although there were more mergers

during the data period, those did not significantly increase the share of a particular

firm.

I use 1999 Q4 as the first period since churn rates become available in the following

period.31 This results in 162 observations from six firms in the first 19 quarters, and

four firms in the last 12 quarters. Due to the small sample size, a simple parametric

utility function is employed as follows.

uijt = αpjt + βt + γ + ξjt + εijt

where t denotes the quarter, and γ a constant. Inclusion of t is prompted by the fact

that minutes of use increases over time for all services. This partially captures network

externalities in demand since more people use a mobile phone service over time. Av-

erage revenue per user is denoted pjt. Switching costs enter additively when i switches

from k 6= j, 0 as described in Assumption 15 in Section 4. Following the specification

used in identification of switching costs in Section 4, I assume that consumers are

myopic and do not consider future costs on choosing a product.

Two instrumental variables are used for pjt. As we have an EBITDA margin, we

can use it to recover variable costs. In particular, average variable costs are calculated

by subtracting average EBITDA from average revenue.32 I use the firm’s own average

variable costs and an average of the other firms’ average variable costs as instrumental

variables for service price. When we interpret the unobserved characteristic ξjt as

service quality it is a reasonable assumption that ξjt is uncorrelated with variable costs,

since the quality of a mobile phone service is likely determined by long term investments

rather than by short term spending. If the unobserved characteristic captures market

31Although churn rates are also unavailable in 1999 Q4, we need the shares in that period to calculate
shares in 2000 Q1 with the model equations.

32EBITDA stands for the earnings before interest, taxes, depreciation, and amortization. An
EBITDA margin is defined as the ratio of EBITDA to total revenue. EBITDA is not exactly eco-
nomic profit, and thus subtracting it from total revenue does not coincide exactly with economic cost.
However, since accounting costs excluding interest, taxes, depreciation, and amortization are related
to production cost, and especially to variable costs, so they can be used as a proxy for economic cost.
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specific demand shocks, it would not be correlated with variable costs as long as firms

do not observe the shocks before making a decision on short term spending but only

before setting price. Such an argument may fail if the short term spending includes

expenses on promotion that boosts demand. But if this is the case, the estimate

from instrumental variables approach would be the most conservative bound for the

parameter.

Using the dataset I show that exclusion of switching costs from the model has

a significant impact on the estimation results. Figure 1 illustrates how distorted the

implied churn rates are when switching costs are assumed to be zero. Churn rates do

not exceed 16% in the data, but the simulation with zero switching costs generates

churn rates greater than 75% in general. Looking at (19) and (20), it is obvious to

see why such distortion happens. A churn rate from a service must coincide with one

minus its market share in the model with cjt = 0 for all j and t, since every consumer

has the same conditional choice probability no matter what service she used in the

last period. As the largest market share is approximately 23% in the data, the above

argument predicts that the model with zero switching costs would yield churn rates

greater than 77%, which is consistent with the simulation result.

Therefore switching costs must be included in the model to appropriately account

for churn rates in the data. I first use a simple logit model allowing for time-varying

product-specific quitting costs. As shown in Section 4, switching costs can be identified

using a contraction mapping in the logit model. A double contraction mapping is used

to find mean utilities and switching costs. In the inner loop switching costs are obtained

by matching churn rates in the data to those implied by the model given the guess on

mean utilities. Mean utilities converge to a point in the outer loop through a mapping

of which the only fixed point is the true mean utilities. The identified mean utility δ̂jt

is then used as a dependent variable in the following regression.

δ̂jt = αpjt + βt + γ + ξjt

The estimation results are presented in Table 1. The first three columns show the

estimates with the assumption of zero switching costs, and the next three are the

results with switching costs considered. As expected, an OLS regression of the implied

mean utilities yields too low a price coefficient. Using instrumental variables yields a

higher price coefficient, which implies that the instrumental variables seem to correct
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a bias.

Comparing (vi) to (iii) in Table 1, inclusion of switching costs reduces the price

coefficient by 39%. This may look unintuitive at a first glance, if one thinks that the

model without switching costs underestimates the price effect. Such a conclusion might

hold if consumers who do not switch in fact due to high switching costs are misun-

derstood to be price insensitive in the model without switching costs. However, the

effect of misspecification on the price coefficient is ambiguous. There is no one-to-one

relationship between the current shares and characteristics of products. Current shares

are determined by previous shares, the current characteristics of products, and switch-

ing costs. When switching costs are assumed away, previous shares do not matter,

and thus the implied price coefficient captures the unconditional correlation between

current share and price. On the other hand, the real price coefficient captures the cor-

relation between the two variables conditional on previous shares and switching costs.

Since the näıve reasoning made above ignores such dynamics, it may not lead to a true

conclusion.

The coefficient on time is positive in all of the specifications. This is reasonable

since the market share of each service is increasing over time during the data period.

As mentioned above, this partially reflects the network externalities in demand. Mobile

phones become more useful as there are more people using them. Another possibility

would be an improvement in functions of mobile phones. Especially toward the end of

the data period, smart phones become more widespread, which dramatically increased

the utility from using a mobile phone. For the same reasons, we may suspect that the

unobserved characteristic ξjt might be correlated over time for a service. Thus I also

provide heteroskedasticity and autocorrelation consistent (HAC) standard errors.33

Note that the coefficient on time is less in (vi) than in (iii). This has the following

implication: without switching costs in the model, we may incorrectly conclude that

the share increased more quickly due to the reasons mentioned in the above paragraph.

While such effects exist to some extent, consumers may remain subscribing in order to

avoid switching costs. Comparing (vi) to (iv), the coefficient on time does not change

much when instrumental variables are used. This is reasonable since time is exogenous.

33Newey and West (1987) suggest a simple way to estimate a HAC covariance matrix. For details
see Andrews (1991).
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There is a relatively large difference in the coefficient on time between (i) and (iii). It

is probably because the model is incorrectly specified, in which case the estimates may

be more sensitive to the use of instrumental variables.

For the second specification for εijt, I estimate the nested logit model. Let all the

service providers in a group, and the outside option in the other group. Let σ ∈ [0, 1]

be the portion of εijt explained by a group-wise logit error. If switching costs do not

exist, Berry (1994) shows that the following holds.

log
sjt

s0t

= σ log
sjt

1− s0t

+ αpjt + βt + γ + ξjt

First I simply mimic such a method and estimate the following regression model.

δ̂jt = σ log
sjt

1− s0t

+ αpjt + βt + γ + ξjt

where δ̂jt is the mean utility identified before. Table 2 (i) and (ii) present the results

from the above two regressions. The estimates are not precise,34 and moreover the

estimate for σ does not fall in [0, 1].

Indeed, mimicking Berry’s equation is a näıve approach when there are switching

costs. Shares and churn rates are a function of true mean utilities, switching costs,

and the distribution of idiosyncratic shocks. Since the distribution of idiosyncratic

shocks depends on σ, the mean utility matching the data would depend on σ as well.

Therefore we need to find the mean utility δ̃jt considering the effect of σ on shares and

churn rates. Once such δ̃jt is obtained, I estimate the following equation.

δ̃jt = αpjt + βt + γ + ξjt

The outer loop searches for σ, while the inner loop identifies δ̃jt, estimates the above

regression, and calculates the objective function from the moment equations given σ.

The results are given in Table 2 (iii) and (iv). They indicate that σ = 0 explains the

data best, and that the estimates of utility parameters coincide with those in Table 1

(v) and (vi).

The last column (v) in Table 2 shows the result from the model where a random

coefficient is given to the group dummy, which is similar to the nested logit model.

34One of the reasons is that the 2SLS estimator does not have a finite first moment when the model
is exactly identified. See Kinal (1980).
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In this case σ ∈ R+ represents the standard deviation of the random coefficient, and

is estimated at 0. The utility parameter estimates are again the same with those in

Table 1 (vi). Finally, I employ a model where there is unobserved heterogeneity in price

sensitivity across consumers. Even when the switching costs are not considered, the

parameter which controls the variance of the price coefficient is not precisely estimated.

This is also the case when I try several models with different types of switching costs.

6 Conclusion

It is well known in the industrial organization literature that data on market shares

and characteristics of products can reveal the utility function or the demand function.

Using the nonparametric identification technique recently developed in econometrics, I

show in this paper that additional data on churn rates from products can fully identify

the transition of idiosyncratic preference shocks. This is useful when we want to have

information on which type of consumers are likely to purchase the same product, and

which type are likely to switch. This information can be used to change regulation or

to improve advertisements. I also show that switching costs are identified from churn

rates. As the empirical estimation of the United States mobile phone service illus-

trates, exclusion of substantial switching costs from a model may lead to inconsistent

estimation. Including switching costs also increases the fit of the model in predicting

churn rates.

This paper has some limitations. I assume that idiosyncratic preference shocks are

independent of products characteristics. Identifying how idiosyncratic shocks evolve

by modeling their dependence on observed characteristics as in the random coefficients

model would be an interesting exercise. Nonparametric dependence seems very dif-

ficult to identify, but employing parametric dependence offers a way to comply with

nonparametric identification of idiosyncratic errors. Considering endogenous switching

costs is also an interesting extension to a different direction. When firms can control

switching costs to some extent, consumers would optimally respond to firms’ incentive

to change switching costs. Such a model would involve more serious dynamic decisions.

A nonparametric estimation of a utility function is not proposed in this paper, and left

for a future project.
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Appendices

A. Identification without full support of shares

The assumption on the support of shares st required for Theorems 1 and 2 is quite

strong. In particular, for some of the distributions Fε and the utility function, we

may not observe the shares on the boundary of ∆J .35 However, the proof of Lemma

2 exploits the full support assumption intensively. It is essential for nonparametric

identification of the utility function δ and the joint distribution Fε of the idiosyncratic

preference shocks.

In this appendix, I provide another version of identification theorems which do

not require the full support of shares. Note that Assumption 5 specifies the marginal

distribution of Fε and thus leads us to use a share on the boundary of the full support.

This is why Lemma 2 and thus Theorems 1 and 2 heavily rely on the full support of

shares. I introduce a different normalization assumption than Assumption 5. Let S be

the joint support of the distribution of (pt, zt, ξt). Although ξt is unobserved, S will be

known after the series {ξt}T
t=1 are identified.

Assumption 18 (Normalization) The support S is convex and symmetric. Pick

(p, z, ξ) so that (p, z, ξ)J ∈ S. Then

(i) The utility function δ(pjt, zjt, ξjt) is known at a point (p, z, ξ). Let δ := δ(p, z, ξ).

(ii) The share function σ(δt) is such that σ1(δ1, δ, · · · , δ) is known for all δ1 ∈ R.

The second part of the above assumption is not restrictive. Note first that the

range of σ1(δ1, δ, · · · , δ) can always be [0, 1]. For any distribution function Fε, it is

clear from (4) that σ1(δ1, δ, · · · , δ) → 0 as δ1 → −∞, that σ1(δ1, δ, · · · , δ) → 1 as

δ1 → ∞, and that σ1(δ1, δ, · · · , δ) is increasing in δ1. Now recall from Lemma 1 that

35With the logit error distribution or the normal distribution which is defined on RJ , every product
earns a non-zero share and cannot have an entire share, so a share on the boundary of ∆J does not
appear. Since we often use such distributions under whose support is a whole Euclidian space RJ ,
application of Theorems 1 and 2 is limited for these kind of models.
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σ and Fε have a one-to-one relationship. Hence σ1(δ1, δ, · · · , δ) can be regarded as a

quasi-conditional distribution of δ1 given (δ2, · · · , δJ) = (δ, · · · , δ). An assumption that

σ1(δ1, δ, · · · , δ) is known is similar in its spirit, although not the same, with Assumption

5 that the marginal distribution of εi1t is known. On the other hand, the first part of

Assumption 18 puts some restriction on the utility function δ. However, this can be

thought of the location normalization of δ. Let S1 := {(p1t, z1t, ξ1t) : (pt, zt, ξt) ∈ S},
then S = SJ

1 since S is symmetric.

Theorem 4 Let S = PJ ×ZJ × ΞJ ⊂ RJ
+ ×R2J be the support of (pt, zt, ξt). Suppose

Assumptions 1-4, 6-8, and 18 hold. Then the unobserved characteristic {ξt}T
t=1 is

identified, and the utility function δ(pjt, zjt + ξjt) is nonparametrically identified on

P × Z × Ξ. The joint distribution Fε is identified on −δ(P × Z × Ξ)J , and the joint

density function f t,t−1
ε of εit and εi,t−1 is identified on −δ(P × Z × Ξ)2J .

Proof. Following the proof of Theorem 1, it is clear that Assumptions 1-3 and 6-8

identify {ξt}T
t=1 and thus S(pt, zt, ξt). Then Assumptions 1-3 and 18, and Lemma 5

imply that the utility function δ(pjt, zjt + ξjt) is identified on P × Z × Ξ, and that

the joint distribution Fε is identified on −δ(P × Z × Ξ)J . Now Assumptions 1-4, and

Lemma 3 imply that the joint density function f t,t−1
ε of εit and εi,t−1 is identified on

−δ(P × Z × Ξ)2J .

Theorem 5 Let S = PJ ×ZJ × ΞJ ⊂ RJ
+ ×R2J be the support of (pt, zt, ξt). Suppose

Assumptions 1-4, 9-14, and 18 hold. Then the unobserved characteristics {ξt}T
t=1 and

the unobserved cost factors {ηt}T
t=1 are identified, and the utility function δ(pjt, zjt, ξjt)

is nonparametrically identified on P ×Z ×Ξ. The joint distribution Fε is identified on

−δ(P × Z × Ξ)J , and the joint density function f t,t−1
ε of εit and εi,t−1 is identified on

−δ(P × Z × Ξ)2J .

Proof. Following the proof of Theorem 2, it is clear that Assumptions 1-3 and 9-14

identify {ξt}T
t=1, {ηt}T

t=1, and thus S(pt, zt, ξt). The rest of the proof is the same with

that of Theorem 4.

Note a couple of comments. Even if the support S is not symmetric, we may

find its symmetric subset and apply the above theorems. Alternatively, we may extend
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the theorems in the way that the utility function is identified on S1 := {(p1t, z1t, ξ1t) :

(pt, zt, ξt) ∈ S} where S := {(pt, zt, ξt) ∈ S : (pjt, zjt, ξjt) = (p, z, ξ) ∀j 6= 1}. In such

a case, the identified set depends on the product we choose for Assumption 18, so we

may want to choose the one that makes the identified set as large as possible. Second,

we may specify the utility function semiparametrically as in Newey and Powell (2003)

so that it is nonparametric on a compact subset of the full support, but parametric on

the rest of the support. Then Lemma 5 shows that we are able to globally identify the

utility function while allowing it to be partially nonparametric.

45



Appendix B. Lemmas

As in Section 3, let Ej be the support of the marginal distribution of εijt.

Lemma 2 Suppose Assumptions 1-3 and 5 hold. Assume further that the data (st, pt, zt)

are available for all st ∈ ∆J and that {ξt}T
t=1 are given. If the share function S(pt, zt, ξt)

defined by (7) is known, the utility function δ(pjt, zjt, ξjt) is identified on the inverse

image of −E1. Also the joint distribution Fε is identified on EJ
1 . Especially, Fε is fully

identified if E1 contains Ej for all j.

Proof. Define the set Sa as the collection of (pt, zt, ξt) generating the share a ∈ ∆J so

that

Sa = {(pt, zt, ξt)|S(pt, zt, ξt) = a}
Pick a = (a1, 0, · · · , 0) ∈ ∆J . For all (pt, zt, ξt) ∈ Sa, we have

σ(δ(p1t, z1t, ξ1t), · · · , δ(pJt, xJt, ξJt)) = (a1, 0, · · · , 0)

Equation (4) implies

a1 =P
(
εikt − εi1t ≤ δ(p1t, z1t, ξ1t)− δ(pkt, zkt, ξkt) ∀k and − εi1t ≤ δ(p1t, z1t, ξ1t)

)

1− a1 =P
(
εikt ≤ −δ(pkt, zkt, ξkt) ∀k

)

and it follows that P
( − εi1t ≤ δ(p1t, z1t, ξ1t)

)
= a1.

36 Since the marginal distribution

of εi1t is known, we have

P
(
εi1t ≥ −δ(p1t, z1t, ξ1t)

)
= a1

1− Fεi1t
(−δ(p1t, z1t, ξ1t)) = a1

Fεi1t
(−δ(p1t, z1t, ξ1t)) = 1− a1

δ(p1t, z1t, ξ1t) = −F−1
εi1t

(1− a1)

for all (pt, zt, ξt) ∈ Sa. Repeat this for all a1 ∈ [0, 1] to identify δ at all points on the

inverse image of −E1. Once δ is identified, it is easy to identify σ from δ and S. Pick

36Note that P (A) ≥ P (A ∩ B) and 1 − P (A) = P (Ac) ≥ P (Ac ∩ C). If P (A ∩ B) = a and
P (Ac ∩ C) = 1− a for some B and C, then it must be that P (A) = a.
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any δt ∈ −EJ
1 , and find (pt, zt, ξt) ∈ RJ

+ × R2J such that δ(pjt, zjt, ξjt) = δjt for all j.

Then σ(δt) = S(pt, zt, ξt) identifies σ on −EJ
1 . Now Fε is identified on EJ

1 from σ by

Lemma 1.

Lemma 3 Suppose Assumptions 1-4 hold. If {ξt}T
t=1 are given and the utility function

δ(pt, zt, ξt) is known on D ⊂ R+ × R2, the joint density function f t,t−1
ε is identified on

−δ(D)2J , where δ(D) stands for the image of δ on the domain D.

Proof. The churn rate is defined by

hjt = P (j is not chosen at t|j was chosen at t− 1)

so

1− hjt =P (j is chosen at t|j was chosen at t− 1)

=P (uijt ≥ uikt ∀k|uij,t−1 ≥ uik,t−1 ∀k)

=P (εikt − εijt ≤ δ(pjt, zjt, ξjt)− δ(pkt, zkt, ξkt) ∀k and − εijt ≤ δ(pjt, zjt, ξjt)|
εik,t−1 − εij,t−1 ≤ δ(pj,t−1, zj,t−1, ξj,t−1)− δ(pk,t−1, zk,t−1, ξk,t−1) ∀k
and − εij,t−1 ≤ δ(pj,t−1, zj,t−1, ξj,t−1))

Pick e = (e′t, e
′
t−1)

′ ∈ −δ(D)2J and find (pt, zt, ξt, pt−1, zt−1, ξt−1) such that

−e1t =δ(p1t, z1t, ξ1t)

...

−eJt =δ(pJt, zJt, ξJt)

−e1,t−1 =δ(p1,t−1, z1,t−1, ξ1,t−1)

...

−eJ,t−1 =δ(pJ,t−1, zJ,t−1, ξJ,t−1)

Using h1t and s1,t−1 which correspond to (pt, zt, ξt, pt−1, zt−1, ξt−1), we can write

(1− h1t)s1,t−1 =P (δ(p1τ , z1τ , ξ1τ ) + εi1τ ≥ 0 and

δ(p1τ , z1τ , ξ1τ ) + εi1τ ≥ δ(pkτ , zkτ , ξkτ ) + εikτ ∀k, τ = t, t− 1)

=P (−e1τ + εi1τ ≥ 0,−e1τ + εi1τ ≥ −ekτ + εikτ ∀k ≥ 2, τ = t, t− 1)

=P (−εi1τ ≤ −e1τ , εikτ − εi1τ ≤ ekτ − e1τ ∀k ≥ 2, τ = t, t− 1) (21)
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Define

b := (−εi1t, εi2t − εi1t, · · · , εiJt − εi1t,−εi1,t−1, εi2,t−1 − εi1,t−1, · · · , εiJ,t−1 − εi1,t−1)

then we have

b =




−1 0 · · · 0 0 · · · · · · 0

−1 1 · · · 0
...

. . .
...

...
...

. . .
...

...
. . .

...

−1 0 · · · 1 0 · · · · · · 0

0 · · · · · · 0 −1 0 · · · 0
...

. . .
... −1 1 · · · 0

...
. . .

...
...

...
. . .

...

0 · · · · · · 0 −1 0 · · · 1







εi1t

εi2t

...

εiJt

εi1,t−1

εi2,t−1

...

εiJ,t−1




=: B

(
εit

εi,t−1

)
(22)

Let Fb be the joint distribution of b and fb be its density function, and we can rewrite

(21) using Fb and B as follows.

(1− h1t)s1,t−1 = P (b ≤ Be) = Fb(Be)

|B| = 1 implies that the relationship (22) between b and (εit, εi,t−1) is globally one-to-

one. Therefore we have by the transformation of variables formula that

f t,t−1
ε (e) = fb(Be)|B| = fb(Be)

Since e ∈ −δ(D)2J was arbitrarily chosen, the above equation identifies f t,t−1
ε on

−δ(D)2J .

Lemma 4 Suppose Assumptions 2, 15 and 16 hold so that the equations for the market

shares and the churn rates are given by (19) and (20), which are for j = 1, · · · , J ,

sjt =
J∑

k=1

σj(δkt, δqt − ckt ∀q 6= k|ui0t = −ckt)sk,t−1 + σj(δt)s0,t−1

1− hjt = σj(δjt, δqt − cjt ∀q 6= j|ui0t = −cjt)

There is a unique set of {(δt, ct)}T
t=2 satisfying the above equations.
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Proof. Suppose that two different sets of {(δt, ct)}T
t=2 and {(δ̃t, c̃t)}T

t=2 satisfy equations

(19) and (20). The proof consists of two steps. In the first step, I show it cannot be

the case that ct 6= c̃t for some t. To see this, suppose by way of contradiction that

ct 6= c̃t for some t. There are three subcases.

The first one is when cjt − c̃jt is positive for all j or negative for all j. Let

cjt > c̃jt for all j without loss of generality and δlt− δ̃lt =: a be the largest value among

{δqt − δ̃qt : q = 1, · · · , J}. (20) yields

σl(δlt + clt, δqt ∀q 6= l|ui0t = 0) = σl(δlt, δqt − clt ∀q 6= l|ui0t = −clt)

= 1− hlt

= σl(δ̃lt, δ̃qt − c̃lt ∀q 6= l|ui0t = −c̃lt)

= σl(δ̃lt + a + c̃lt, δ̃qt + a ∀q 6= l|ui0t = a)

= σl(δlt + c̃lt, δ̃qt + a ∀q 6= l|ui0t = a)

Since clt > c̃lt and δqt − δ̃qt ≤ a, or equivalently δqt ≤ δ̃qt + a for all q, the strict

monotonicity of σl implies that a < 0. Now take the minimum δmt − δ̃mt =: b among

{δqt − δ̃qt : q = 1, · · · , J}, then obviously b < 0. Therefore, we have for all k 6= m,

σm(δkt, δqt − ckt ∀q 6= k|ui0t = −ckt) = σm(δkt − b + ckt, δqt − b ∀q 6= k|ui0t = −b)

< σm(δ̃kt + c̃kt, δ̃qt ∀q 6= k|ui0t = 0)

= σm(δ̃kt, δ̃qt − c̃kt ∀q 6= k|ui0t = −c̃kt)

Note that the inequality holds since δqt − δ̃qt ≥ b, or equivalently δqt − b ≥ δ̃qt for all

q, ckt ≥ c̃kt, −b > 0, but δmt − b = δ̃mt, and σm is strictly decreasing in the arguments

other than the m-th one. Also

σm(δt) = σm(δt − b|ui0t = −b) < σm(δ̃t)

for the same reason, and finally

σm(δmt, δqt − cmt ∀q 6= m|ui0t = −cmt) = 1− hmt

= σm(δ̃mt, δ̃qt − c̃mt ∀q 6= m|ui0t = −c̃mt)
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Since sk,t−1 ≥ 0 for all k = 0, · · · , J , we have

J∑

k=1

σm(δkt, δqt − ckt ∀q 6= k|ui0t = −ckt)sk,t−1 + σm(δt)s0,t−1

<
J∑

k=1

σm(δ̃kt, δ̃qt − c̃kt ∀q 6= k|ui0t = −c̃kt)sk,t−1 + σm(δ̃t)s0,t−1

which violates (19) for j = m.

The second subcase is when cjt − c̃jt is positive for some j but non-positive for

other j, and δqt − δ̃qt is positive for some q. Define a set J+ := {j : cjt − c̃jt > 0},
and let δlt − δ̃lt =: a > 0 be the largest among {δqt − δ̃qt : q = 1, · · · , J}. I claim that

l 6∈ J+. To see this, recall that

σl(δlt + clt, δqt ∀q 6= l|ui0t = 0) = 1− hlt

= σl(δ̃lt + c̃lt, δ̃qt ∀q 6= l|ui0t = 0)

= σl(δlt + c̃lt, δ̃qt + a ∀q 6= l|ui0t = a)

Since δqt − δ̃qt ≤ a, or equivalently δqt ≤ δ̃qt + a for all q, and a > 0, the strict

monotonicity of σl implies that clt < c̃lt. I next claim that δkt − a + ckt ≤ δ̃kt + c̃kt for

all k 6= l. To see this, note that for any k ∈ J+,

σk(δkt + ckt, δqt ∀q 6= k|ui0t = 0) = 1− hkt

= σk(δ̃kt + c̃kt, δ̃qt ∀q 6= k|ui0t = 0)

= σk(δ̃kt + a + c̃kt, δ̃qt + a ∀q 6= k|ui0t = a)

and that δjt ≤ δ̃jt + a for all j and a > 0. So the monotonicity of σk implies that

δkt + ckt < δ̃kt + a + c̃kt, or equivalently δkt − a + ckt < δ̃kt + c̃kt. For any k 6∈ J+ ∪ {l},

(δkt − a + ckt)− (δ̃kt + c̃kt) = (δkt − δ̃kt − a) + (ckt − c̃kt) ≤ 0

since δkt − δ̃kt ≤ a and ckt ≤ c̃kt for such k. Therefore, we have for all k 6= l,

σl(δkt, δqt − ckt ∀q 6= k|ui0t = −ckt) = σl(δkt − a + ckt, δqt − a ∀q 6= k|ui0t = −a)

> σl(δ̃kt + c̃kt, δ̃qt ∀q 6= k|ui0t = 0)

= σl(δ̃kt, δ̃qt − c̃kt ∀q 6= k|ui0t = −c̃kt)
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Note that the inequality holds since δkt−a+ckt ≤ δ̃kt+ c̃kt, δqt− δ̃qt ≤ a, or equivalently

δqt − a ≤ δ̃qt for all q, −a < 0, but δlt − a = δ̃lt, and σl is strictly decreasing in all

arguments other than the l-th one. Also

σl(δt) = σl(δt − a|ui0t = −a) > σl(δ̃t)

for the same reason, and finally

σl(δlt, δqt − clt ∀q 6= l|ui0t = −clt) = 1− hlt = σl(δ̃lt, δ̃qt − c̃lt ∀q 6= l|ui0t = −c̃lt)

Since sk,t−1 ≥ 0 for all k = 0, · · · , J , we have

J∑

k=1

σl(δkt, δqt − ckt ∀q 6= k|ui0t = −ckt)sk,t−1 + σl(δt)s0,t−1

>

J∑

k=1

σl(δ̃kt, δ̃qt − c̃kt ∀q 6= k|ui0t = −c̃kt)sk,t−1 + σl(δ̃t)s0,t−1

which violates (19) for j = l.

The third subcase is when cjt− c̃jt is positive for some j but non-positive for other

j, and δqt− δ̃qt is non-positive for all q. Define J+ := {j : cjt− c̃jt > 0} in the same way.

It cannot be the case that δqt − δ̃qt = 0 for all q, since if it is true, for some k ∈ J+,

(20) implies that

σk(δkt + ckt, δqt ∀q 6= k|ui0t = 0) = 1− hkt

= σk(δ̃kt + c̃kt, δ̃qt ∀q 6= k|ui0t = 0)

= σk(δkt + c̃kt, δqt ∀q 6= k|ui0t = 0)

which contradicts the strict monotonicity of σk in its k-th argument. Hence δqt− δ̃qt < 0

for some q. Take the minimum δmt − δ̃mt =: b < 0 among those values. Note that

σm(δmt + cmt, δqt ∀q 6= m|ui0t = 0) = 1− hmt

= σm(δ̃mt + c̃mt, δ̃qt ∀q 6= m|ui0t = 0)

= σm(δmt + c̃mt, δ̃qt + b ∀q 6= m|ui0t = b)

Since δqt−δ̃qt ≥ b, or equivalently δqt ≥ δ̃qt+b for all q, and b < 0, the strict monotonicity

of σm implies that cmt > c̃mt, and thus m ∈ J+. I next claim that δkt−b+ckt ≥ δ̃kt + c̃kt
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for all k 6= m. To see this, note that for any k 6∈ J+,

σk(δkt + ckt, δqt ∀q 6= k|ui0t = 0) = 1− hkt

= σk(δ̃kt + c̃kt, δ̃qt ∀q 6= k|ui0t = 0)

= σk(δ̃kt + b + c̃kt, δ̃qt + b ∀q 6= k|ui0t = b)

and that δqt ≥ δ̃qt + b for all q and b < 0. So the monotonicity of σk implies that

δkt + ckt > δ̃kt + b + c̃kt, or equivalently δkt − b + ckt > δ̃kt + c̃kt. It is obvious that for

k ∈ J+ \ {m},

(δkt − b + ckt)− (δ̃kt + c̃kt) = (δkt − δ̃kt − b) + (ckt − c̃kt) ≥ 0

since δkt − δ̃kt ≥ b and ckt ≥ c̃kt for such k. Therefore we have for all k 6= m,

σm(δkt, δqt − ckt ∀q 6= k|ui0t = −ckt) = σm(δkt − b + ckt, δqt − b ∀q 6= k|ui0t = −b)

< σm(δ̃kt + c̃kt, δ̃qt ∀q 6= k|ui0t = 0)

= σm(δ̃kt, δ̃qt − c̃kt ∀q 6= k|ui0t = −c̃kt)

Note that the inequality holds since δkt−b+ckt ≥ δ̃kt + c̃kt, δqt− δ̃qt ≥ b, or equivalently

δqt − b ≥ δ̃qt for all q, −b > 0, but δmt − b = δ̃mt, and σm is strictly decreasing in all

arguments other than the m-th one. Also

σm(δt) = σm(δt − b|ui0t = −b) < σm(δ̃t)

for the same reason, and finally

σm(δmt, δqt − cmt ∀q 6= m|ui0t = −cmt) = 1− hmt

= σm(δ̃mt, δ̃qt − c̃mt ∀q 6= m|ui0t = −c̃mt)

Since sk,t−1 ≥ 0 for all k = 0, · · · , J , we have

J∑

k=1

σm(δkt, δqt − ckt ∀q 6= k|ui0t = −ckt)sk,t−1 + σm(δt)s0,t−1

<

J∑

k=1

σm(δ̃kt, δ̃qt − c̃kt ∀q 6= k|ui0t = −c̃kt)sk,t−1 + σm(δ̃t)s0,t−1

which violates (19) for j = m.
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Therefore we have ct = c̃t for all t. In the next step, I show it cannot be the

case that δt 6= δ̃t for some t given ct = c̃t for all t. Suppose by way of contradiction

that δqt − δ̃qt 6= 0 for some q and t. Assume δqt − δ̃qt > 0 for some q without loss of

generality. Let δlt − δ̃lt =: a > 0 be the largest value among {δqt − δ̃qt : j = 1, · · · , J}.
(20) implies that

1− hlt = σl(δ̃lt + c̃lt, δ̃qt ∀q 6= l|ui0t = 0)

= σl(δ̃lt + a + clt, δ̃qt + a ∀q 6= l|ui0t = a)

> σl(δlt + clt, δqt ∀q 6= l|ui0t = 0) = 1− hlt

where the second equality holds by c̃lt = clt, and the inequality holds since a ≥ δqt− δ̃qt,

or equivalently δ̃qt +a ≥ δqt for all j, a > 0, but δ̃lt +a = δlt, and σl is strictly increasing

in its l-th argument, and strictly decreasing in the others. There is a contradiction,

and thus we can conclude that δt = δ̃t for all t.

Lemma 5 Suppose Assumptions 1-3 and 18 hold. Let S be the convex and symmetric

support of (pt, zt, ξt) and S1 := {(p1t, z1t, ξ1t) : (pt, zt, ξt) ∈ S}. If {ξt}T
t=1 are given and

the function S(pt, zt, ξt) defined by (7) is known, the utility function δ(pjt, zjt, ξjt) is

identified on the set S1, and the joint distribution Fε is identified on the set −δ(S1)
J .

Proof. Pick (p1t, z1t, ξ1t) ∈ S1, and let (pt, zt, ξt) be such that (pjt, zjt, ξjt) = (p, z, ξ) for

all j 6= 1. Assumption 18 (i) implies that

st =S(pt, zt, ξt)

=σ(δ(p1t, z1t, ξ1t), δ(p2t, z2t, ξ2t), · · · , δ(pJt, zJt, ξJt))

=σ(δ(p1t, z1t, ξ1t), δ, · · · , δ)

Since σ1 is known at such points by Assumption 18 (ii), we have

δ(p1t, z1t, ξ1t) = σ−1
1 (s1t|δj = δ ∀j ≥ 2)

As the choice of (p1t, z1t, ξ1t) is arbitrary, δ is identified on S1. Once δ is identified, we

can follow a method employed in the proof of Lemma 2 to identify σ from δ and S.

Pick any δt ∈ δ(S1)
J , and find (pt, zt, ξt) ∈ S such that δ(pjt, zjt, ξjt) = δjt for all j.

Then σ(δt) = S(pt, zt, ξt) identifies σ on δ(S1)
J . Now Fε is identified on −δ(S1)

J from

σ by Lemma 1.
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C. Tables and Figures

TABLE 1. Results from the logit model

i ii iii iv v vi

Variables OLS 2SLS GMM OLS 2SLS GMM

t 0.0751 0.0624 0.0627 0.0536 0.0487 0.0511

White St.Err. (0.0047) (0.0047) (0.0045) (0.0033) (0.0032) (0.0031)

HAC St.Err. (0.0086) (0.0083) (0.0079) (0.0054) (0.0050) (0.0046)

p −0.0263 −0.0901 −0.0915 −0.0258 −0.0505 −0.0560

White St.Err. (0.0049) (0.0132) (0.0120 ) (0.0040) (0.0077) (0.0074)

HAC St.Err. (0.0092) (0.0239) (0.0215) (0.0068) (0.0126) (0.0118)

constant −2.0135 1.8080 1.8788 −3.8638 −2.3879 −2.1436

White St.Err. (0.3613) (0.6943) (0.6353) (0.2547) (0.4124) (0.4077)

HAC St.Err. (0.6788) (1.2367) (1.1237) (0.4333) (0.6577) (0.6366)

switching costs not used not used not used included included included

R2 0.7535 0.4680 0.4553 0.7640 0.6872 0.6455
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TABLE 2. Results from other models

i ii iii iv v

Variables Nested Nested Nested Nested Random coefft.

Logit Logit Logit Logit on

(näıve) (2SLS) (GMM) group dummy

t 0.0544 0.0070 0.0487 0.0511 0.0511

White St.Err (0.0319) (0.3292) (0.0032) (0.0035) (0.0031)

HAC St.Err. (0.0494) (0.5102) (0.0050) (0.0057) (0.0046)

p 0.0826 0.8501 −0.0505 −0.0560 −0.0560

White St.Err (0.6642) (6.8716) (0.0077) (0.0074) (0.0074)

HAC St.Err. (1.0069) (10.4301) (0.0126) (0.0119) (0.0118)

constant −4.3477 −34.4913 −2.3880 −2.1436 −2.1436

White St.Err (23.7596) (245.8417) (0.4124) (0.4079) (0.4077)

HAC St.Err. (36.0452) (373.3842) (0.6576) (0.6397) (0.6366)

σ 1.9180 10.0029 0.0000 0.0000 0.0000

White St.Err (7.3173) (75.7090) (0.6724) (0.0235) (8.3035)

HAC St.Err. (11.0701) (114.6779) (0.9591) (0.0337) (11.8448)

switching costs not used included included included included

R2 0.5485 −86.2598 0.6872 0.6455 0.6455
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FIGURE 1. The actual churn rates vs

the implied ones by zero switching costs
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FIGURE 2. The mean utilities δjt

without and with switching costs

99Q4 00Q4 01Q4 02Q4 03Q4 04Q4 05Q4 06Q4 07Q4
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
mean utilities w/ zero switching costs

99Q4 00Q4 01Q4 02Q4 03Q4 04Q4 05Q4 06Q4 07Q4
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5
mean utilities w/ switching costs

 

 

Verizon
Cingular
Sprint
T−mobile
AT&T
Nextel

57



FIGURE 3. The switching costs consistent with the churn rates
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