Question 1:

1.a. Show that if Γ and Θ are $\sigma-$algebras on S, the intersection of Γ and Θ is also a $\sigma-$algebra on S.

1.b. Let A denote a collection of subsets in S. Let Φ denote the intersection of all $\sigma-$algebras that contain A. Show that Φ is not empty and that it is a $\sigma-$algebra. What is the smallest $\sigma-$algebra that contains A?

1.c. Let S denote the real line, and suppose that A is the set of all open sets in S. Let Φ denote the smallest $\sigma-$algebra that contains A. Does the set $\{0\}$ belong to Φ? Does the interval $(a, b]$ (where $a < b$) belong to Φ? Explain.

Question 2:

Let $C_1, ..., C_n$ be sets in a sample space, S.

2.a. Prove the Inclusion-Exclusion Formula:

$$P\left(\bigcup_{i=1}^{k} C_i\right) = p_1 - p_2 + p_3 - \ldots + (-1)^{k+1} p_k$$

where p_i is the sum of all possible intersections involving i sets.

2.b. Prove Boole’s inequality:

$$P\left(\bigcup_{i=1}^{n} C_i\right) \leq \sum_{i=1}^{n} P(C_i)$$

Question 3:

Let (S_X, Γ_X, P_X) denote the probability space induced by a random variable, X, on (S, Γ, P). Let A and B be elements in Γ_X and A_1, A_2, \ldots be a sequence in Γ_X. Determine whether the following are true or false. Prove your answers.
3.a. $X^{-1}(A \cup B) = X^{-1}(A) \cup X^{-1}(B)$

3.b. $X^{-1}(\bigcup_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} X^{-1}(A_i)$

3.c. $X^{-1}(\bigcap_{i=1}^{\infty} A_i) = \bigcap_{i=1}^{\infty} X^{-1}(A_i)$

3.d. $X^{-1}(A^c) = [X^{-1}(A)]^c$

Question 4:

Solve questions 1.2.17, 1.4.2 ad 1.4.27 from Hogg, McKean, and Craig.