Economics 203C (Spring, 2009)

Problem Set I (due 4/14/9)

1. Examine the finite-sample properties of two GMM estimators via a Monte Carlo simulation. Consider the linear model $y_{i}=x_{i} \beta+\varepsilon_{i} \in \mathbb{R}$ for $i=1,2, \ldots, n$, where the scalar β equals 0 . Suppose the $z_{i} \in \mathbb{R}^{K}$ are iid $N(0, \Lambda)$-vectors of instrumental variables, where $\Lambda \in \mathbb{R}^{K \times K}$ is the positive definite matrix given by $D D^{\prime}$ for a nonsingular matrix $D \in \mathbb{R}^{K \times K}$ of your choice (but don't pick the identity matrix). Assume that $x_{i}=z_{i}^{\prime} \pi+u_{i}$, where $\left(\varepsilon_{i}, u_{i}\right)$ are iid $N(0, \Omega)$, where Ω is a 2×2-matrix with diagonal and off diagonal elements 1 and ρ, respectively. Let $\pi=(\eta, \eta, \ldots, \eta)^{\prime}$. Set $n=100$ and simulate $R=1000$ data samples for all 8 parameter combinations of $K=(1 ; 10), \eta=(.05 ; 1)$ and $\rho=(0 ; .5)$.

The definition of the GMM stochastic criterion function depends on the weighting matrix A_{n}. The first estimator sets $A_{n}:=I_{K}$. The second estimator (called "two-stage least squares", TSLS) picks A_{n} such that

$$
\begin{aligned}
A_{n}^{\prime} A_{n} & =\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i} Z_{i}^{\prime}\right)^{-1}, \text { and is given by } \\
\widehat{\beta} & =\left(X^{\prime} P_{Z} X\right)^{-1} X^{\prime} P_{Z} Y, \text { where } \\
P_{Z} & =Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime}
\end{aligned}
$$

and X, Y are the n-vectors with components x_{i} and y_{i}, and Z is the $n \times K$-matrix with rows z_{i}^{\prime}.

In each of the 8 cases and each sample, calculate the two estimators. In each of the 8 cases, report summary statistics (bias, standard deviation, and mean squared error) of the estimators. Interpret the parameters η and ρ and discuss your results. Are your finite sample findings consistent with the asymptotic efficiency results?
2. Review of some mathematical notions that came up in class:
(i) Prove, starting from the definition of convergence in probability:
(a) $o_{p}(1)+o_{p}(1)=o_{p}(1), o_{p}(1) o_{p}(1)=o_{p}(1)$.
(b) Assume the function g is continuous at a. Show that $g\left(a+o_{p}(1)\right)=$ $g(a)+o_{p}(1)$.
(ii) Prove that for real-valued sequences $\left(a_{n}\right)$ and $\left(b_{n}\right), n \in \mathbb{N}$, we have

$$
\limsup \left(a_{n}+b_{n}\right) \leq \limsup \left(a_{n}\right)+\limsup \left(b_{n}\right)
$$

Do we even have equality?
3. Minimum distance (MD) estimation of a parameter vector θ_{0} is another example of extremum estimation.

Let $\widehat{\pi}_{n}$ be an estimator of a k-vector parameter π_{0}. Suppose π_{0} is known to be a function of $\theta_{0} \in \mathbb{R}^{d}$, where $\pi_{0}=g\left(\theta_{0}\right)$ for a certain known function $g(\cdot) .{ }^{1}$

[^0]Let A_{n} be a $k \times k$ random weight matrix. Define the MD estimator $\widehat{\theta}_{n}$ as the minimizer of

$$
Q_{n}(\theta)=\left\|A_{n}\left(\widehat{\pi}_{n}-g(\theta)\right)\right\|^{2} / 2
$$

over $\theta \in \Theta$ where Θ is the parameter space. Under appropriate assumptions prove consistency of the MD estimator. [Assume 1) $A_{n} \rightarrow_{p} A$ and $\widehat{\pi}_{n} \rightarrow_{p} \pi_{0}$ where A is nonsingular 2) there exists a unique value $\theta_{0} \in \Theta$ such that $\pi_{0}=g\left(\theta_{0}\right)$ and maybe more.] What is Q in this example?
4. Prove that Assumption ID is implied by ID1. Provide examples that show that any two of the three conditions in ID1 are not enough to imply ID.

[^0]: ${ }^{1}$ Clarification: The estimator $\widehat{\pi}_{n}$ is not defined as $g(\widehat{\theta})$. The estimator $\widehat{\pi}_{n}$ is observed and the estimator $\widehat{\theta}$ is defined as the θ that minimizes the distance between $\widehat{\pi}_{n}$ and $g(\theta)$.

