
Problem Set 1 Solution

April 15th, 2009 by Yang

1. Monte Carlo Simulation: Weak Instruments Problem in the Linear IV Model

First, let us talk about how to generate a normal random vector with correlation. When wi ∼ N(0, IK),
we have zi := Dwi ∼ N(0, DD′). We usually generate a n×K matrix W as

W =




w′1
...

w′n




and thus to generate a n×K matrix Z whose each row z′i is a vector with variance DD′,

Z := WD′ =




w′1D
′

...
w′nD′


 =




(Dw1)′
...

(Dwn)′




Therefore, the MATLAB code would be as follows

n = 100;
K = 10;
D = rand(K);
W = randn(n,K);
Z = W*D’;

The function mvnrnd() also generates such a matrix. We will get the same Z by the following.

mu = zeros(1,K);
Z = mvnrnd(mu,D*D’,n);

The former method is more flexible in the sense that once we generate W , we can use the same W to
form Z for any η. Now turning to generating s′i = (εi, ui)′, we can use a similar method. But in this
case, we have to find some matrix like D above. The function chol() does this. T = chol(Ω) gives T

such that T ′T = Ω. Note that the order of multiplication is a little different. So the following gives S

whose each row s′i is distributed normally with variance Ω.

rho = 0.5;
Omega = [1,rho;rho,1];
T = chol(Omega);
V = randn(n,2);
S = V*T;

Of course, we can use the following instead to get the same S. But the former method enables us to
use the same random numbers for any ρ within each iteration.

mu = [0,0];
S = mvnrnd(mu,Omega,n);
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Now look at the estimators. With An as a weighting matrix, GMM is equivalent to solving

min
β

1
2
(Y −Xβ)′ZA′nAnZ ′(Y −Xβ)

which gives the following first order condition.

−X ′ZA′nAnZ ′(Y −Xβ̂) = 0

So,
β̂ =

(
X ′ZA′nAnZ ′X

)−1
X ′ZA′nAnZ ′Y

The first estimator uses An := IK , and the second estimator uses An such that A′nAn = (Z ′Z/n)−1,
so

β̂1 =
(
X ′ZZ ′X

)−1
X ′ZZ ′Y

β̂2 =
(
X ′Z(Z ′Z)−1Z ′X

)−1
X ′Z(Z ′Z)−1Z ′Y (2SLS estimator)

We get 1000 estimates for each combination of K, η, and ρ. To get mean bias, we calcualte E[β̂]−β by
approximation. Also median bias, standard deviation, and root mean squared error can be obtained
in a similar way. See the MATLAB code posted with this solution for details. (You are free to use
other programs such as GAUSS, R, and SAS.)

Results

---------------||------------------- K=1 ---------------||----------------- K=10 ----------------

(eta / rho) || (.05/0) (.05/.5) (1/0) (1/.5) (.05/0) (.05/.5) (1/0) (1/.5)

---------------||--------------------------------------------------------------------------------

GMM1 mean bias || 1.0310 -0.8982 -0.0006 -0.0058 0.0054 0.0229 0.0002 0.0003

TSLS mean bias || 1.0310 -0.8982 -0.0006 -0.0058 0.0021 0.0415 0.0001 0.0002

GMM1 med bias || 0.0424 0.4266 -0.0008 -0.0008 0.0064 0.0264 0.0004 0.0004

TSLS med bias || 0.0424 0.4266 -0.0008 -0.0008 0.0067 0.0467 0.0002 0.0003

GMM1 st. dev. || 38.0180 45.7800 0.1022 0.1034 0.1097 0.1086 0.0055 0.0055

TSLS st. dev. || 38.0180 45.7800 0.1022 0.1034 0.0979 0.0954 0.0050 0.0050

GMM1 rms error || 38.0130 45.7660 0.1022 0.1035 0.1098 0.1109 0.0055 0.0055

TSLS rms error || 38.0130 45.7660 0.1022 0.1035 0.0978 0.1040 0.0050 0.0050

Interpretation

1. When η = 0.05, there is weak relation between xi and zi. On the other hand, η = 1 says that
zi explains xi a lot compared to the error ui, which stands for strong instruments case. In the
simulation result, the case where η = 1 finds estimators much better than the other case.

2. When ρ = 0, there is no endogeneity issue. Using weak instruments (K = 1, η = 0.05) in this
case is as bad as in the case where there is indeed an endogeneity problem, while using better
instruments (K = 10 or η = 1) work quite well. However, note that the OLS would be the
best linear estimator when ρ = 0, so the IV estimator will always be inefficient. When ρ = 0.5,
we have endogeneity problem. IV estimators are generally good, except for the case of weak
instruments (K = 1, η = 0.05). Especially, when K = 10 and η = 1, IV estimators are excellent,
doing as good as in the case where there is no endogeneity problem.
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3. When K = 1, (Z ′Z)−1 is a scalar, so β̂1 and β̂2 are numerically the same in any case as we can
see. There seems to be greater biases, variances, and mean squared errors compared to those of
corresponding cases in K = 10. More instruments work better in any case.

4. While n = 100 is not sufficient for the large sample, the Monte Carlo simulation finds that 2SLS
estimator has less variance than the other estimator in most of the cases. This is consistent with
the theory that 2SLS estimator has the least asymptotic variance when errors are conditionally
homoskedastic. While 2SLS estimator has greater biases when K = 10 and η = 0.05, mean
squared errors are still less. Note again that when K = 1, 2SLS and the other estimators are
numerically the same, so there cannot be any comparison.

2. Some Proofs: (i) (a) While we can use even the definition of limit in proving these claims, this
approach is not taken here, and it is assumed that everybody is familiar with the definition of limit.
Let Xn and Yn be op(1). First we want to prove Xn + Yn = op(1). Take any ε > 0. By definition, we
have

lim
n→∞Pr

(
|Xn| > ε

2

)
= 0

lim
n→∞Pr

(
|Yn| > ε

2

)
= 0

Note that the event |Xn + Yn| > ε is a subset of the event |Xn| + |Yn| > ε, which is a subset of the
event that |Xn| > ε

2 or |Yn| > ε
2 . So

lim
n→∞Pr(|Xn + Yn| > ε) ≤ lim

n→∞Pr(|Xn|+ |Yn| > ε)

≤ lim
n→∞Pr

(
|Xn| > ε

2
or |Yn| > ε

2

)

≤ lim
n→∞

[
Pr

(
|Xn| > ε

2

)
+ Pr

(
|Yn| > ε

2

)]

= lim
n→∞Pr

(
|Xn| > ε

2

)
+ lim

n→∞Pr
(
|Yn| > ε

2

)
= 0

A probability is always nonnegative, so limn→∞ Pr(|Xn + Yn| > ε) = 0. Next we want to prove
XnYn = op(1). Take any ε > 0. By definition, we have

lim
n→∞Pr

(|Xn| >
√

ε
)

= 0

lim
n→∞Pr

(|Yn| >
√

ε
)

= 0

In a similar way,

lim
n→∞Pr(|XnYn| > ε) ≤ lim

n→∞Pr
(|Xn| >

√
ε or |Yn| >

√
ε
)

≤ lim
n→∞

[
Pr

(|Xn| >
√

ε
)

+ Pr
(|Yn| >

√
ε
)]

= lim
n→∞Pr

(|Xn| >
√

ε
)

+ lim
n→∞Pr

(|Yn| >
√

ε
)

= 0

The choice of Xn, Yn, and ε are arbitrary, so we are done.
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(b) Let Xn be op(1). We want to prove that g(a + Xn)− g(a) is op(1). Take any ε > 0. Because g is
continous at a, we can find δ > 0 such that |g(b)− g(a)| < ε for any b with |b− a| < δ. By definition,
for such δ

lim
n→∞Pr(|Xn| < δ) = 1

Now note that, by construction of δ, the event |g(a + Xn) − g(a)| < ε contains the event |Xn| < δ.
Therefore,

lim
n→∞Pr

(
|g(a + Xn)− g(a)| < ε

)
≥ lim

n→∞Pr(|Xn| < δ) = 1

A probability cannot be greater than 1, so limn→∞ Pr
(
|g(a + Xn)− g(a)| < ε

)
= 1, which completes

the proof.

(ii) Recall that
lim sup

n→∞
(an) = lim

n→∞ sup
k≥n

(ak)

Use the fact that1

sup
k≥n

(ak + bk) ≤ sup
k≥n

(ak) + sup
k≥n

(bk)

Taking limit,
lim

n→∞ sup
k≥n

(ak + bk) ≤ lim
n→∞ sup

k≥n
(ak) + lim

n→∞ sup
k≥n

(bk)

which is the desired result. The equality does not hold. As a counterexample, consider an := (−1)n

and bn := (−1)n+1. Then an + bn = 0, so the LHS is 0, but the RHS would be 2.

3. Minimum Distance Estimator

We have to assume the following.

1. An
p−→ A and π̂n

p−→ π0.

2. There exists a unique value θ0 ∈ Θ such that π0 = g(θ0).

3. A is nonsingular.

4. g is continuous.

5. Θ is compact.

6. (Assumption EE) θ̂n ∈ Θ and Qn(θ̂n) ≤ infθ∈Θ Qn(θ) + op(1).

1This can be easily proven. Let cn = an + bn. Choose any m ≥ n. By definition of sup, am ≤ supk≥n(ak) and
bm ≤ supk≥n(bk), which implies cm ≤ supk≥n(ak) + supk≥n(bk). Since this holds for any m ≥ n, we have

sup
k≥n

ck ≤ sup
k≥n

(ak) + sup
k≥n

(bk)

as desired. (This proof is taken from Kyoo-il Kim’s suggested solution.)
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Under these assumptions, we can prove that the MD estimator is consistent. It is easy to see that Qn

converges pointwise in probability to

Q := ‖A(π0 − g(θ))‖2/2

In order to prove consistency, it suffices to prove that Assumptions ID and UWCON hold by 1-5. Now
check that Assumptions ID1 hold.

(1) Θ is compact by 5.

(2) Q is continuous in θ by 4.

(3) θ0 uniquely minimizes Q by 2 and 3. To see this, note first that Q(θ0) = 0 by 2 and that this is
the minimum. Let Q(θ) = 0 for some θ. This implies A(π0 − g(θ)) = 0. By 3, π0 − g(θ) = 0,
and thus by 2, θ = θ0.

Since Assumption ID1 implies Assumption ID as we will prove in the next question, Assumption ID
holds. UWCON can be directly proven by 1, 4 and 5.2 We have to prove that for any ε > 0,

lim
n→∞Pr

(
sup
θ∈Θ

|Qn(θ)−Q(θ)| > ε

)
= 0

or equivalently, supθ∈Θ |Qn(θ)−Q(θ)| p−→ 0. Note that by triangular inequality and Q2 (ii),

sup
θ∈Θ

|Qn(θ)−Q(θ)| ≤ sup
θ∈Θ

∣∣∣Qn(θ)− ‖A(π̂n − g(θ))‖2/2
∣∣∣

︸ ︷︷ ︸
(i)

+sup
θ∈Θ

∣∣∣‖A(π̂n − g(θ))‖2/2−Q(θ)
∣∣∣

︸ ︷︷ ︸
(ii)

Now
(i) =

1
2

sup
θ∈Θ

∣∣∣(π̂n − g(θ))′(A′nAn −A′A)(π̂n − g(θ))
∣∣∣ = op(1)

since A′nAn −A′A = op(1) by 1, and π̂n − g(θ) = Op(1) by compactness of g(Θ) which is implied by 4
and 5. Also

(ii) =
1
2

sup
θ∈Θ

∣∣∣(π̂n − g(θ))′A′A(π̂n − g(θ))− (π0 − g(θ))′A′A(π0 − g(θ))
∣∣∣

=
1
2

sup
θ∈Θ

∣∣∣π̂′nA′Aπ̂n − π′0A
′Aπ0 − 2π̂′nA′Ag(θ) + 2π0A

′Ag(θ)
∣∣∣

≤ 1
2

∣∣π̂′nA′Aπ̂n − π′0A
′Aπ0

∣∣
︸ ︷︷ ︸

=op(1) by 1

+ sup
θ∈Θ

∣∣(−π̂n + π0)A′Ag(θ)
∣∣

︸ ︷︷ ︸
=op(1) by 1, compactness of g(Θ)

= op(1)

where the last equality holds by Q2 (i) (a). Now that (i) and (ii) imply supθ∈Θ |Qn(θ)−Q(θ)| ≤ op(1),
the fact that |Qn(θ)−Q(θ)| ≥ 0 for any θ and any event further implies supθ∈Θ |Qn(θ)−Q(θ)| = op(1),
which completes the proof.

2This proof is taken from Kyoo-il Kim’s suggested solution.
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4. ID1 implies ID

Suppose ID1 holds. Take any ε > 0. Since Θ is compact and B(θ0, ε) is open, Θ \ B(θ0, ε) is
compact. Since Q is continuous, Q(Θ \B(θ0, ε)) is also compact. Therefore there exists a minimum of
Q(Θ \B(θ0, ε)). Define θε ∈ Θ \B(θ0, ε) as the minimizer of Q(Θ \B(θ0, ε)). Clearly, θε 6= θ0, which
is the unique minimizer of Q, and thus Q(θε) > Q(θ0). So we established that for any ε > 0,

inf
θ∈Θ\B(θ0,ε)

Q(θ) = min
θ∈Θ\B(θ0,ε)

Q(θ) =: Q(θε) > Q(θ0)

Take counterexamples as follows.

1. Θ is not compact.
Let Θ = [0, 2), and Q(θ) = 1− (θ− 1)2. Q(θ) is continuous and is uniquely minimized at θ0 = 0,
but infθ∈Θ\B(θ0,1) Q(θ) = limθ→2 Q(θ) = 0 = Q(θ0).
Another example would be Θ = [0,∞), and Q(θ) = min(θ, 1

θ ). Again, Q(θ) is continuous and is
uniquely minimized at θ0 = 0, but infθ∈Θ\B(θ0,1) Q(θ) = limθ→∞Q(θ) = 0 = Q(θ0).

2. Q is not continuous.
Let Θ = [0, 2], and Q(θ) = 1− (θ − 1)2 for θ ∈ [0, 2), and Q(2) = 1. Q(θ) is uniquely minimized
at θ0 = 0, but infθ∈Θ\B(θ0,1) Q(θ) = limθ→2 Q(θ) = 0 = Q(θ0).

3. Q is not uniquely minimized at θ0.
Let Θ = [0, 2], and Q(θ) = 1 − (θ − 1)2. If θ0 = 0, infθ∈Θ\B(θ0,1) Q(θ) = Q(2) = 0 = Q(θ0). If
θ0 = 2, infθ∈Θ\B(θ0,1) Q(θ) = Q(0) = 0 = Q(θ0). So no true θ0 satisfies Assumption ID.
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