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Economics 203C (Spring, 2009)

Problem Set IT (due 4/21/9)

1) Prove the following statement: Suppose (i) Bn —p Bo € R?, (il) Sup,er SUPgep(8y ) | Ln(7: 8)—
L(~,B)| —p 0 for some € > 0, and (iii) L(v, B) is continuous in B at o uniformly over v € T’

(i-e., limp g, sup,erp |L(v, B) — L(v, Bo)| = 0.) Then,

sup ‘Ln('}/y Bn) - L(’Y? /30)’ & 0. (1)
~yel

Note that condition (iii) holds if T" is compact and L(+y, 8) is continuous in (v, 3) on I x B(5o, €).

2) (a) Covariance estimation: Suppose Y; = X;8+ Uy for t = 1,..., T, {(X, Uy) : t > 1} are did
with E(Us|X;) = 0 a.s. and E(U?|X;) < oo a.s.. The least squares estimator B1g satisfies

VT (BLs — B) —a Z ~ N(0,9) as T — oo, (2)
where Q := (EX;X]) 'EU? X, X;(EX;X})~!. Show that the so-called Eicker-White estimator
Y 1 T 1 T 1 T
Qo= (5 2 X X)) 7 Y URXGX{( X0 XeX) ™ (3)
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where ﬁt =Y — X{BLS, satisfies Q —p 0 as T' — oo. State clearly in each step of your argument
which rule you use and which assumptions are needed.

(b) In the linear regression model of part a) with 02 = E(U?|X;) < oo a.s. (conditional
homoskedasticity), design a Monte Carlo study in which you compare the precision of the Eicker-
White estimator with the one of the covariance matrix estimator that assumes conditional ho-
moskedasticity. For simplicity take EX;X] = Ij. Report finite sample bias, variance, and mean-
squared error of the variance estimators. Experiment with various error distributions. Note that
whenever you pin down distributions for U and X, you know what the true € is.

R 3) (a) For the MD estimator, discussed on problem set 1, establish asymptotic normality of
0,,. [Assume here that /n(7, — m) —q N(0, Vp)] .

(b) Another example of an extremum estimator is the Two-step (TS) Estimator: Suppose the
data {W; : i < n} are iid, 7, is a preliminary consistent estimator of a parameter 9, G,,(0,7) is a
random k-vector that should be close to 0 when § = 0y, 7 = 79, and n is large (e.g., in the GMM
case, Gp(0,7) = 237 | g(W;,0,7) and in the MD case G,(6,7) = 7(r) — g(0,7)), and A, is a
k x k random weight matrix. Then, the TS estimator é\n minimizes

Qn(e) = ||AnGn(97?n)H2/2 (5)

! Additional hints: When you differentiate @, () with respect to 6, then 7, is to be treated as a vector
of constants. The function g(f) does not depend on the data. When working out what By and Qg are, replace

estimators by their probability limits, e.g. 7, by mo. To show asymptotic normality, let Bo = a5 ;H,Q(Ho)
Provide primitive assumptions for the assumption f 56 Qn(00) —a N(0,Q0). What is 207 Then use a Taylor
expansion

2

S50 @ (02) (0n — 00), (4)

P ~
= 25Qn(0.) = 55Qu(00) +

where 0;, lies between é\n and 0y. Solve for (@\n —6o)...



over § € ©. Under appropriate assumptions (including G, (6, 7) 2 G(6, 7)) what is Q(#)? Give
primitive conditions that imply consistency (in particular, when does fy uniquely minimize Q(6)
over ©7) Asymptotic normality will be discussed in the TA section.

4) Investigate how well the asymptotic normal distribution of the two-stage least squares
(TSLS) estimator approximates its finite sample distribution. Consider the linear model

yi=zif+e €R (6)
for i = 1,2, ...,n, where the scalar 8 equals 0. Suppose z; € R¥ are iid N (0, Ix). Assume that
T = 2T + ug, (7)

where (g;,u;) are iid N(0,), where € is a 2 x 2-matrix with diagonal and off diagonal elements
1 and p, respectively. Let # = (n,n,...,7n)".

(i) Derive the asymptotic distribution of the TSLS estimator in this model. Does it depend
on K, nor p?

Let n = 100 and simulate R = 5000 data samples for all 8 parameter combinations of K =
(1;10), n = (.05;1) and p = (0;.95) .

(ii) Plot the finite sample distribution of the TSLS estimator. Use separate graphs for each of
the eight parameter combinations. Does the distribution change with K, n or p?

(iii) Simulate the asymptotic normal distribution you derived in (i) for the TSLS estimator
and plot it in the corresponding graphs of (ii). Comment on the goodness of the approximation.



