Economics 203C (Spring, 2009)

Problem Set II (due 4/21/9)

1) Prove the following statement: Suppose (i) $\widehat{\beta}_{n} \rightarrow_{p} \beta_{0} \in R^{s}$, (ii) $\sup _{\gamma \in \Gamma} \sup _{\beta \in B\left(\beta_{0}, \varepsilon\right)} \mid L_{n}(\gamma, \beta)-$ $L(\gamma, \beta) \mid \rightarrow_{p} 0$ for some $\varepsilon>0$, and (iii) $L(\gamma, \beta)$ is continuous in β at β_{0} uniformly over $\gamma \in \Gamma$ (i.e., $\lim _{\beta \rightarrow \beta_{0}} \sup _{\gamma \in \Gamma}\left|L(\gamma, \beta)-L\left(\gamma, \beta_{0}\right)\right|=0$.) Then,

$$
\begin{equation*}
\sup _{\gamma \in \Gamma}\left|L_{n}\left(\gamma, \widehat{\beta}_{n}\right)-L\left(\gamma, \beta_{0}\right)\right| \xrightarrow{p} 0 . \tag{1}
\end{equation*}
$$

Note that condition (iii) holds if Γ is compact and $L(\gamma, \beta)$ is continuous in (γ, β) on $\Gamma \times B\left(\beta_{0}, \varepsilon\right)$.
2) (a) Covariance estimation: Suppose $Y_{t}=X_{t}^{\prime} \beta+U_{t}$ for $t=1, \ldots, T,\left\{\left(X_{t}, U_{t}\right): t \geq 1\right\}$ are iid with $E\left(U_{t} \mid X_{t}\right)=0$ a.s. and $E\left(U_{t}^{2} \mid X_{t}\right)<\infty$ a.s.. The least squares estimator $\widehat{\beta}_{L S}$ satisfies

$$
\begin{equation*}
\sqrt{T}\left(\widehat{\beta}_{L S}-\beta\right) \rightarrow_{d} Z \sim N(0, \Omega) \text { as } T \rightarrow \infty, \tag{2}
\end{equation*}
$$

where $\Omega:=\left(E X_{t} X_{t}^{\prime}\right)^{-1} E U_{t}^{2} X_{t} X_{t}^{\prime}\left(E X_{t} X_{t}^{\prime}\right)^{-1}$. Show that the so-called Eicker-White estimator

$$
\begin{equation*}
\widehat{\Omega}:=\left(\frac{1}{T} \sum_{t=1}^{T} X_{t} X_{t}^{\prime}\right)^{-1} \frac{1}{T} \sum_{t=1}^{T} \widehat{U}_{t}^{2} X_{t} X_{t}^{\prime}\left(\frac{1}{T} \sum_{t=1}^{T} X_{t} X_{t}^{\prime}\right)^{-1} \tag{3}
\end{equation*}
$$

where $\widehat{U}_{t}:=Y_{t}-X_{t}^{\prime} \widehat{\beta}_{L S}$, satisfies $\widehat{\Omega} \rightarrow_{p} \Omega$ as $T \rightarrow \infty$. State clearly in each step of your argument which rule you use and which assumptions are needed.
(b) In the linear regression model of part a) with $\sigma^{2}=E\left(U_{t}^{2} \mid X_{t}\right)<\infty$ a.s. (conditional homoskedasticity), design a Monte Carlo study in which you compare the precision of the EickerWhite estimator with the one of the covariance matrix estimator that assumes conditional homoskedasticity. For simplicity take $E X_{t} X_{t}^{\prime}=I_{k}$. Report finite sample bias, variance, and meansquared error of the variance estimators. Experiment with various error distributions. Note that whenever you pin down distributions for U and X, you know what the true Ω is.
3) (a) For the MD estimator, discussed on problem set 1, establish asymptotic normality of $\widehat{\theta}_{n}$. [Assume here that $\left.\sqrt{n}\left(\widehat{\pi}_{n}-\pi_{0}\right) \rightarrow_{d} N\left(0, V_{0}\right)\right]^{1}$.
(b) Another example of an extremum estimator is the Two-step (TS) Estimator: Suppose the data $\left\{W_{i}: i \leq n\right\}$ are iid, $\widehat{\tau}_{n}$ is a preliminary consistent estimator of a parameter $\tau_{0}, G_{n}(\theta, \tau)$ is a random k-vector that should be close to 0 when $\theta=\theta_{0}, \tau=\tau_{0}$, and n is large (e.g., in the GMM case, $G_{n}(\theta, \tau)=\frac{1}{n} \sum_{i=1}^{n} g\left(W_{i}, \theta, \tau\right)$ and in the MD case $\left.G_{n}(\theta, \tau)=\widehat{\pi}(\tau)-g(\theta, \tau)\right)$, and A_{n} is a $k \times k$ random weight matrix. Then, the TS estimator $\widehat{\theta}_{n}$ minimizes

$$
\begin{equation*}
Q_{n}(\theta)=\left\|A_{n} G_{n}\left(\theta, \widehat{\tau}_{n}\right)\right\|^{2} / 2 \tag{5}
\end{equation*}
$$

[^0]over $\theta \in \Theta$. Under appropriate assumptions (including $\left.G_{n}(\theta, \tau) \xrightarrow{p} G(\theta, \tau)\right)$ what is $Q(\theta)$? Give primitive conditions that imply consistency (in particular, when does θ_{0} uniquely minimize $Q(\theta)$ over Θ ?) Asymptotic normality will be discussed in the TA section.
4) Investigate how well the asymptotic normal distribution of the two-stage least squares (TSLS) estimator approximates its finite sample distribution. Consider the linear model
\[

$$
\begin{equation*}
y_{i}=x_{i} \beta+\varepsilon_{i} \in \mathbb{R} \tag{6}
\end{equation*}
$$

\]

for $i=1,2, \ldots, n$, where the scalar β equals 0 . Suppose $z_{i} \in \mathbb{R}^{K}$ are iid $N\left(0, I_{K}\right)$. Assume that

$$
\begin{equation*}
x_{i}=z_{i}^{\prime} \pi+u_{i}, \tag{7}
\end{equation*}
$$

where $\left(\varepsilon_{i}, u_{i}\right)$ are iid $N(0, \Omega)$, where Ω is a 2×2-matrix with diagonal and off diagonal elements 1 and ρ, respectively. Let $\pi=(\eta, \eta, \ldots, \eta)^{\prime}$.
(i) Derive the asymptotic distribution of the TSLS estimator in this model. Does it depend on K, η or ρ ?

Let $n=100$ and simulate $R=5000$ data samples for all 8 parameter combinations of $K=$ $(1 ; 10), \eta=(.05 ; 1)$ and $\rho=(0 ; .95)$.
(ii) Plot the finite sample distribution of the TSLS estimator. Use separate graphs for each of the eight parameter combinations. Does the distribution change with K, η or ρ ?
(iii) Simulate the asymptotic normal distribution you derived in (i) for the TSLS estimator and plot it in the corresponding graphs of (ii). Comment on the goodness of the approximation.

[^0]: ${ }^{1}$ Additional hints: When you differentiate $Q_{n}(\theta)$ with respect to θ, then $\widehat{\pi}_{n}$ is to be treated as a vector of constants. The function $g(\theta)$ does not depend on the data. When working out what B_{0} and Ω_{0} are, replace estimators by their probability limits, e.g. $\widehat{\pi}_{n}$ by π_{0}. To show asymptotic normality, let $B_{0} \equiv \frac{\partial^{2}}{\partial \theta \partial \theta^{\prime}} Q\left(\theta_{0}\right)>0$. Provide primitive assumptions for the assumption $\sqrt{n} \frac{\partial}{\partial \theta} Q_{n}\left(\theta_{0}\right) \rightarrow{ }_{d} N\left(0, \Omega_{0}\right)$. What is Ω_{0} ? Then use a Taylor expansion

 $$
 \begin{equation*}
 0=\frac{\partial}{\partial \theta} Q_{n}\left(\widehat{\theta}_{n}\right)=\frac{\partial}{\partial \theta} Q_{n}\left(\theta_{0}\right)+\frac{\partial^{2}}{\partial \theta \partial \theta^{\prime}} Q_{n}\left(\theta_{n}^{*}\right)\left(\widehat{\theta}_{n}-\theta_{0}\right), \tag{4}
 \end{equation*}
 $$

 where θ_{n}^{*} lies between $\widehat{\theta}_{n}$ and θ_{0}. Solve for $\left(\widehat{\theta}_{n}-\theta_{0}\right) \ldots$

