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Problem Set II (due 4/21/9)

1) Prove the following statement: Suppose (i) b�n !p �0 2 Rs, (ii) sup2� sup�2B(�0;") jLn(; �)�
L(; �)j !p 0 for some " > 0, and (iii) L(; �) is continuous in � at �0 uniformly over  2 �
(i.e., lim�!�0 sup2� jL(; �)� L(; �0)j = 0.) Then,

sup
2�

jLn(; b�n)� L(; �0)j p! 0: (1)

Note that condition (iii) holds if � is compact and L(; �) is continuous in (; �) on ��B(�0; "):

2) (a) Covariance estimation: Suppose Yt = X
0
t�+Ut for t = 1; :::; T; f(Xt; Ut) : t � 1g are iid

with E(UtjXt) = 0 a.s. and E(U2t jXt) <1 a.s.. The least squares estimator b�LS satis�es
p
T (b�LS � �)!d Z � N(0;
) as T !1; (2)
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where bUt := Yt�X 0
t
b�LS , satis�es b
!p 
 as T !1: State clearly in each step of your argument

which rule you use and which assumptions are needed.
(b) In the linear regression model of part a) with �2 = E(U2t jXt) < 1 a.s. (conditional

homoskedasticity), design a Monte Carlo study in which you compare the precision of the Eicker-
White estimator with the one of the covariance matrix estimator that assumes conditional ho-
moskedasticity. For simplicity take EXtX

0
t = Ik: Report �nite sample bias, variance, and mean-

squared error of the variance estimators. Experiment with various error distributions. Note that
whenever you pin down distributions for U and X; you know what the true 
 is.

3) (a) For the MD estimator, discussed on problem set 1, establish asymptotic normality ofb�n. [Assume here that pn(b�n � �0)!d N(0; V0)]
1.

(b) Another example of an extremum estimator is the Two-step (TS) Estimator: Suppose the
data fWi : i � ng are iid, b�n is a preliminary consistent estimator of a parameter �0, Gn(�; �) is a
random k-vector that should be close to 0 when � = �0, � = �0, and n is large (e.g., in the GMM
case, Gn(�; �) =

1
n

Pn
i=1 g(Wi; �; �) and in the MD case Gn(�; �) = b�(�) � g(�; �)), and An is a

k � k random weight matrix. Then, the TS estimator b�n minimizes
Qn(�) = jjAnGn(�; b�n)jj2=2 (5)

1Additional hints: When you di�erentiate Qn(�) with respect to �, then b�n is to be treated as a vector
of constants. The function g(�) does not depend on the data. When working out what B0 and 
0 are, replace

estimators by their probability limits, e.g. b�n by �0. To show asymptotic normality, let B0 � @2

@�@�0Q(�0) > 0:
Provide primitive assumptions for the assumption

p
n @
@�
Qn(�0) !d N(0;
0): What is 
0? Then use a Taylor

expansion

0 =
@

@�
Qn(b�n) = @

@�
Qn(�0) +

@2

@�@�0
Qn(�

�
n)(b�n � �0); (4)

where ��n lies between b�n and �0: Solve for (b�n � �0):::
1



over � 2 �. Under appropriate assumptions (including Gn(�; �)
p! G(�; �)) what is Q(�)? Give

primitive conditions that imply consistency (in particular, when does �0 uniquely minimize Q(�)
over �?) Asymptotic normality will be discussed in the TA section.

4) Investigate how well the asymptotic normal distribution of the two-stage least squares
(TSLS) estimator approximates its �nite sample distribution. Consider the linear model

yi = xi� + "i 2 R (6)

for i = 1; 2; :::; n; where the scalar � equals 0: Suppose zi 2 RK are iid N(0; IK). Assume that

xi = z
0
i� + ui; (7)

where ("i; ui) are iid N(0;
); where 
 is a 2� 2-matrix with diagonal and o� diagonal elements
1 and �, respectively. Let � = (�; �; : : : ; �)0 :

(i) Derive the asymptotic distribution of the TSLS estimator in this model. Does it depend
on K; � or �?

Let n = 100 and simulate R = 5000 data samples for all 8 parameter combinations of K =
(1; 10) ; � = (:05; 1) and � = (0; :95) :

(ii) Plot the �nite sample distribution of the TSLS estimator. Use separate graphs for each of
the eight parameter combinations. Does the distribution change with K; � or �?

(iii) Simulate the asymptotic normal distribution you derived in (i) for the TSLS estimator
and plot it in the corresponding graphs of (ii). Comment on the goodness of the approximation.
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