
Problem Set 2 Solution

April 22nd, 2009 by Yang

1. More Generalized Slutsky Theorem

[Simple and Abstract]

sup
γ∈Γ

|Ln(γ, β̂n)− L(γ, β0)| = sup
γ∈Γ

|Ln(γ, β̂n)− L(γ, β̂n) + L(γ, β̂n)− L(γ, β0)|

≤ sup
γ∈Γ

|Ln(γ, β̂n)− L(γ, β̂n)|+ sup
γ∈Γ

|L(γ, β̂n)− L(γ, β0)| (1)

≤ sup
γ∈Γ

sup
β∈B(β0,ε)

|Ln(γ, β)− L(γ, β)|+ sup
γ∈Γ

|L(γ, β̂n)− L(γ, β0)|

= op(1) + op(1) = op(1)

where the third line can be obtained with probability approaching 1, and the fourth line follows from
the assumptions (i), (ii) and (iii).

[Formal and Detailed]
Take any ξ > 0. Note that by (1)

lim
n→∞Pr

(
sup
γ∈Γ

|Ln(γ, β̂n)− L(γ, β0)| > ξ

)

≤ lim
n→∞Pr

(
sup
γ∈Γ

|Ln(γ, β̂n)− L(γ, β̂n)|+ sup
γ∈Γ

|L(γ, β̂n)− L(γ, β0)| > ξ

)

≤ lim
n→∞Pr

(
sup
γ∈Γ

|Ln(γ, β̂n)− L(γ, β̂n)| > ξ

2

)

︸ ︷︷ ︸
=:A1

+ lim
n→∞Pr

(
sup
γ∈Γ

|L(γ, β̂n)− L(γ, β0)| > ξ

2

)

︸ ︷︷ ︸
=:A2

Partitioning the event in A1 yields

A1 = lim
n→∞Pr

(
sup
γ∈Γ

|Ln(γ, β̂n)− L(γ, β̂n)| > ξ

2
and ‖β̂n − β0‖ > ε

)

+ lim
n→∞Pr

(
sup
γ∈Γ

|Ln(γ, β̂n)− L(γ, β̂n)| > ξ

2
and ‖β̂n − β0‖ ≤ ε

)

≤ lim
n→∞Pr(‖β̂n − β0‖ > ε) + lim

n→∞Pr

(
sup
γ∈Γ

sup
β∈B(β0,ε)

|Ln(γ, β)− L(γ, β)| > ξ

2

)
= 0

where the last equality follows from the assumptions (i) and (ii). Also by the assumption (iii), there
exists δ > 0 such that for any β ∈ B(β0, δ)

sup
γ∈Γ

|L(γ, β)− L(γ, β0)| ≤ ξ

2
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This implies, by contrapositive,

A2 ≤ lim
n→∞Pr(‖β̂n − β0‖ > δ) = 0

where the last equality follows from the assumption (i). Therefore, we have

lim
n→∞Pr

(
sup
γ∈Γ

|Ln(γ, β̂n)− L(γ, β0)| > ξ

)
= 0

for any ξ > 0, which completes the proof.

2. Eicker-White Robust Covariance Estimation

(a) By
√

T (β̂LS − β) d−→ Z ∼ N(0, Ω), we have β̂LS
p−→ β.1 This implies, by continuous mapping

theorem,
Ût = Yt −X ′

tβ̂LS
p−→ Yt −X ′

tβ = Ut

This implies in turn, by continuous mapping theorem,

EÛ2
t XtX

′
t

p−→ EU2
t XtX

′
t

Note that the LHS term is a random variable, while the RHS term is a scalar. Applying LLN,

1
T

T∑

t=1

Û2
t XtX

′
t

p−→ EÛ2
t XtX

′
t

under the following assumptions.2

• EU2
t < ∞3

• E|U2
t XtiXtj | < ∞ for all i, j = 1, · · · ,K where K = dim(Xt).

• E|X2
tiXtjXtk| < ∞ for all i, j, k = 1, · · · ,K.

Combining these two,
1
T

T∑

t=1

Û2
t XtX

′
t

p−→ EU2
t XtX

′
t

Also without any further assumption, by applying LLN,

1
T

T∑

t=1

XtX
′
t

p−→ EXtX
′
t

1To see this, note that β̂LS − β = Op(T−1/2) as we will prove in problem set 3. So β̂LS − β = op(1).
2We may not apply iid version of LLN directly to 1

T

∑T
t=1 Û2

t XtX
′
t. This is because {Ût : 1 ≤ t ≤ T} are not

independent. Instead, we apply uniform LLN to 1
T

∑T
t=1(Yt −X ′

tθ)
2XtX

′
t for θ ∈ B(β, ε). Since β̂LS is consistent for β,

we can get the desired result under the described assumptions. See White (Econometrica, 1980) for details.
3Note this is not implied by E(U2

t |Xt) < ∞.
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Therefore, by multilication rule,

Ω̂ :=

(
1
T

T∑

t=1

XtX
′
t

)−1
1
T

T∑

t=1

Û2
t XtX

′
t

(
1
T

T∑

t=1

XtX
′
t

)−1

p−→ (EXtX
′
t)
−1EU2

t XtX
′
t(EXtX

′
t)
−1 = Ω

under the additional assumption

• EXtX
′
t is nonsingular

(b) Suppose the assumption of conditional homoskedasticity holds so that E(U2
t |Xt) = σ2. Then the

variance of β̂LS simplifies as follows.

Ω = (EXtX
′
t)
−1Eσ2XtX

′
t(EXtX

′
t)
−1 = σ2(EXtX

′
t)
−1

So if we believe this assumption, we may use the following formula to estimate a covariance matrix.

Ω̂CH = σ̂2

(
1
T

T∑

t=1

XtX
′
t

)−1

where CH denotes “conditional homoskedasticity,” and σ̂2 can be estimated by

σ̂2 =
1
T

T∑

t=1

Û2
T =

1
T

T∑

t=1

(Yt −X ′
tβ̂LS)2

If we are more dubious of the assumption, we can use the Eicker-White robust covariance estimator.

Ω̂EW =

(
1
T

T∑

t=1

XtX
′
t

)−1
1
T

T∑

t=1

Û2
t XtX

′
t

(
1
T

T∑

t=1

XtX
′
t

)−1

Let us talk a little on how to program this. Denote by X, the matrix which stacks X ′
t by row. Define

Y , U and Û in the same way. Then,
∑T

t=1 XtX
′
t = X ′X, and

∑T
t=1 Û2

T = Û ′Û . Therfore, to estimate
Ω̂CH , we can use OmegaCH = (Uhat’ * Uhat / T) * inv(X’ * X / T), or simply drop both T ’s.
However,

∑T
t=1 Û2

t XtX
′
t cannot be simplified using matrix notation.4 The most straightforward way

to calculate it is using a loop. But there is a simpler way to do this in MATLAB, using element-wise
multiplication. Define Wt := ÛtXt, and denote by W , the matrix which stacks W ′

t by row. Then,

W ′W =
T∑

t=1

WtW
′
t =

T∑

t=1

Û2
t XtX

′
t

Note that W is the matrix obtained by multiplying Ût to each element in t’th row of X. This is
equivalent to element-wise multiplication of ÛL′ and X, where L′ is a 1× k row vector of 1’s. So by
doing W = (Uhat * ones(1,k)) .* X, we get such a matrix. Therefore Ω̂EW can be calculated by
OmegaEW = inv(X’ * X / T) * W’ * W / T * inv(X’ * X / T).

4Note that Û ′ÛX ′X = (
∑T

t=1 Û2
t )(

∑T
t=1 XtX

′
t) is totally different from

∑T
t=1 Û2

t XtX
′
t.
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See the MATLAB code posted for details. It would be good to run the code with different choices of
R, T , k, and most importantly, σ2. The following shows the result with two sets of parameters with
R = 1000, T = 100. On the left, k = 1 and σ2 = 9, and on the right, k = 3 and σ2 = 25.5

True beta 1.0000 1.0000 2.0000 3.0000
------------------------ ------------------------------

(estimates of beta)
Mean 0.9967 0.9833 2.0103 2.9852

Standard Dev 0.2930 0.5068 0.5054 0.5046
------------------------ ------------------------------

True Omega 9.0000 25.0000 0.0000 0.0000
0.0000 25.0000 0.0000
0.0000 0.0000 25.0000

------------------------ ------------------------------
Mean Bias (estimates of Omega1: correct formula)

0.0964 0.3992 -0.0154 -0.0291
-0.0154 0.6921 0.0654
-0.0291 0.0654 0.5944

(estimates of Omega2: White formula)
-0.0527 -0.0192 0.0564 -0.1876

0.0564 0.3143 0.0031
-0.1876 0.0031 0.4074

------------------------ ------------------------------
Standard Dev (estimates of Omega1: correct formula)

1.8753 5.1120 2.6270 2.5793
2.6270 5.3957 2.6308
2.5793 2.6308 5.3192

(estimates of Omega2: White formula)
2.5961 6.8917 4.3187 4.2576

4.3187 7.1830 4.3945
4.2576 4.3945 7.2081

------------------------ ------------------------------
R M S Error (estimates of Omega1: correct formula)

1.8769 5.1250 2.6257 2.5781
2.6257 5.4372 2.6303
2.5781 2.6303 5.3497

(estimates of Omega2: White formula)
2.5953 6.8883 4.3169 4.2596

4.3169 7.1863 4.3923
4.2596 4.3923 7.2160

------------------------ ------------------------------

Norm Stats Omega1 Omega2 Omega1 Omega2
---------------------------------- --------------------

Mean 1.4679 1.9923 10.3988 15.1711
Standard Dev 1.1702 1.6641 4.1532 5.7600

Minimum 0.0002 0.0094 2.7274 4.2677
Median 1.2196 1.6877 9.6479 14.2907
Maximum 7.2610 15.2920 33.2757 48.9044

5You may try another set of assumptions on β, EXtX
′
t, the distribution of Xt, and that of Ut. But when you change

the distributions of Xt and Ut, make sure that the correct variances of Xt and Ut are used in the code.
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To summarize the result, the standard deviation of each element of Eicker-White estimator is 30-40%
bigger than that of the estimator using the correct formula. So is the root mean squared error. But
looking at the mean bias, Eicker-White estimator is less biased (by mean) in many cases, especially
on diagonal elements. These properties hold for many choices of R, T , k, and σ2 that have ever been
tried. In the table, “Norm stats” are also reported. The norm is the distance between true Ω and
estimates Ω̂, calcualted by taking square root of the summed squares of difference in each element.
The distributions of 4 sets of 1000 norms are summarized as seen. This implies that the Eicker-White
estimator is bigger in general, but not that bad. Moreover it is robust to heteroskedasticity of errors,
so it would be better to use this formula if we are not sure of conditional homoskedasticity.

3. Asymptotic Theory

(a) Additionally we need to assume

1. [CF i] θ0 ∈ int(Θ)

2. [EE2 ii] ∂
∂θQn(θ̂n) = op(n−1/2)

3. g(θ) ∈ C2(Θ0) for some neighborhood Θ0 ⊂ Θ of θ0 (with probability one)

4. ∂
∂θ′ g(θ0) has full column rank.

Note that we already assumed

5.
√

n(π̂n − π0)
d−→ N(0, V0)

6. An
p−→ A where A is nonsingular.

7. There exists a unique value θ0 ∈ Θ such that π0 = g(θ0).

8. Θ is compact.

9. [EE] θ̂n ∈ Θ and Qn(θ̂n) ≤ infθ∈Θ Qn(θ) + op(1)

• g is continuous.

• π̂n
p−→ π0

Since the last two are implied by 3 and 5 repectively, we need assumptions 1-9. Now let us check how
the above assumptions imply CF and EE2. EE2 is implied by 2-3 and 5-9. CF i is assumed in 1. CF
ii is implied by 3. CF iii is implied by 3, 5 and 6. To see what Ω0 is, consider

√
n

∂

∂θ
Qn(θ0) = − ∂

∂θ
g′(θ0)A′nAn

√
n(π̂n − g(θ0)) = − ∂

∂θ
g′(θ0)A′nAn

√
n(π̂n − π0)
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Define Γ0 := ∂
∂θ′ g(θ0). Then by 5 and 6,

√
n

∂

∂θ
Qn(θ0)

d−→ N(0, Γ′0A
′AV0A

′AΓ0)

Let us check that CF iv is implied by 3-7. The candidate for B(θ) can be obatined by 3, 5 and 6.

[B(θ)]mj = plim
∂2

∂θm∂θj
Qn(θ) =

∂

∂θm
g′(θ)A′A

∂

∂θj
g(θ)− ∂2

∂θm∂θj
g′(θ)A′A(π0 − g(θ))

By 3, this is continuous in θ. Moreover, ∂2

∂θ∂θ′Qn(θ) is also continuous in θ, and by choice, Θ0 is
compact. So uniform convergence follows from pointwise convergence.

sup
θ∈Θ0

∥∥∥∥
∂2

∂θ∂θ′
Qn(θ)−B(θ)

∥∥∥∥
p−→ 0

Finally, B(θ0) is nonsingular by 4 and 6. When evaluated at θ0, the second summand of [B(θ0)]mj is
0, so

B0 := B(θ0) =
∂

∂θ
g′(θ0)A′A

∂

∂θ′
g(θ0) = Γ′0A

′AΓ0

So the asymptotic normality follows.

√
n(θ̂n − θ0)

d−→ N
(
0, (Γ′0A

′AΓ0)−1Γ′0A
′AV0A

′AΓ0(Γ′0A
′AΓ0)−1

)

(b) We need to assume the following.

1. [EE] θ̂n ∈ Θ and Qn(θ̂n) ≤ infθ∈Θ Qn(θ) + op(1)

2. [ID1 i] Θ is compact.

3. G(θ, τ) is continuous in θ at τ = τ0.

4. There exists a unique value θ0 ∈ Θ such that G(θ0, τ0) = 0.

5. An
p−→ A where A is nonsingular.

6. τ̂n
p−→ τ0

7. supθ∈Θ supτ∈B(τ0,ε) |Gn(θ, τ)−G(θ, τ)| p−→ 0 for some ε > 0

8. G(θ, τ) is continuous in τ at τ0 uniformly over θ ∈ Θ.

Let us first determine what Q(θ) is. By 5-7, we have pointwise convergence such that for any θ ∈ Θ,

Qn(θ)
p−→ ‖AG(θ, τ0)‖2/2 =: Q(θ)

For this Q(θ), ID holds by 2-5. In particular, 4 and 5 imply ID iii. To see this, note first that Q(θ0) = 0
and that this is the minimum since Q(θ) ≥ 0 for any θ. Suppose that θ satisfies Q(θ) = 0. Then, by
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the property of norm operator, AG(θ, τ0) = 0. By 5, G(θ, τ0) = 0, and thus by 4, θ = θ0, which proves
ID iii. Now let us turn to UWCON. 2-3 and 5-8 imply UWCON. First, applying Question 1, 6-8 imply

sup
θ∈Θ

‖Gn(θ, τ̂n)−G(θ, τ0)‖ p−→ 0

Using 2, 3, 5, 6 and this,

sup
θ∈Θ

|Qn(θ)−Q(θ)| ≤ sup
θ∈Θ

|Qn(θ)−G′(θ, τ0)A′nAnG(θ, τ0)/2|+ sup
θ∈Θ

|G′(θ, τ0)A′nAnG(θ, τ0)/2−Q(θ)|

≤ 2 · 1
2

sup
θ∈Θ

|G′(θ, τ0)|A′nAn sup
θ∈Θ

|Gn(θ, τ̂n)−G(θ, τ0)| (wp approaching 1)

+
1
2

sup
θ∈Θ

|G′(θ, τ0)||A′nAn −A′A| sup
θ∈Θ

|G(θ, τ0)|

= Op(1)Op(1)op(1) + Op(1)op(1)Op(1) = op(1)

4. Monte Carlo Simulation: Goodness of Approximation to the Assymptotic Distribution

(i) As we derived before, under conditional homoskedasticity, β̂2SLS has the asymptotic variance of
σ2

(
Exiz

′
i(Eziz

′
i)
−1Ezix

′
i

)−1. Since σ2 = 1, Eziz
′
i = IK and Eziui = 0,

Exiz
′
i = E(z′iπz′i + uiz

′
i) = π′(Eziz

′
i) + Euiz

′
i = π′

and thus we can calculate the asymptotic variance as follows.

σ2
(
Exiz

′
i(Eziz

′
i)
−1Ezix

′
i

)−1 = (π′IKπ)−1 =
1

Kη2

It depends on K and η but not on ρ.

(ii) Looking at the first figure, we can see many huge outliers of estimates in the case where K = 1
and η = 0.05. This is consistent with the fact that the 2SLS estimator has no finite first moment when
it is exactly identified. Even when η = 1, we can observe some outliers although they are not very
big. The 2SLS estimator tends to be biased when ρ = 0.95 and the instruments are weak. K and η

affect the variance of estimates in general.

(iii) In the second figure, the histogram of estimates was normalized so that the area of histogram bars
is 1, and the pdf of the distribution approximated by the asymptotic distribution is plotted together.6

To focus on the shape of the distribution, the outliers are dropped from this figure. When η = 1,
the asymptotic distribution approximates the simulated distribution quite well, while it does not if
η = 0.05. When K = 1 and ρ = 0, there does not seem to be a bias, but there are outliers and
estimates which are not outliers are centered more than the approximated distribution. In the thrid
figure, the numbers drawn from the approximated distribution are plotted, along with the histogram
of estimates without rescaling. It looks similar to the second figure.

6Since the asymptotic distribution is obtained by scaling β̂2SLS up by
√

n, we always need to scale the asymptotic
variance down by n to get the approximated variance.
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FIGURE1. Histogram of Estimates
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FIGURE2. Histogram and Approximated Distribution
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FIGURE3. Histogram and Approximated Distribution (simulated)
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