UCLA, Department of Economics, Patrik Guggenberger Economics 203C (Spring, 2009) April 16, 2009

Problem Set III (due 4/28/09)

1. This exercise continues the investigation of the minimum distance (MD) estimator $\hat{\theta}_n$ of θ_0 , of Problem Sets I and II, where asymptotic normality of the MD estimator $\hat{\theta}_n$ was derived. (i) Assume \hat{V}_n is a consistent estimator of V_0 (the asymptotic covariance

(i) Assume V_n is a consistent estimator of V_0 (the asymptotic covariance matrix of $\sqrt{n}(\hat{\pi}_n - \pi_0)$). How would you estimate the asymptotic covariance matrix of the MD estimator $\hat{\theta}_n$?

(ii) Find the optimal choice of the weighting matrix A_n .

2. This exercise continues the Monte Carlo experiments of Problem Sets I and II. (same model and notation). This time we are interested in the finite sample size and power properties of a Wald test of the null hypothesis $H_0: \beta = 0$ versus the alternative $H_1: \beta \neq 0$.

(i) Denote the true β in the structural equation $y_i = x_i\beta + \varepsilon_i$ by β_0 . For the eight parameter combinations K = (1, 10), $\rho = (.5, .99)$ and $\eta = (.05, 1)$ and for each $\beta_0 \in S := \{-.8, -.6, ..., .6, .8\}$ simulate R = 1000 data samples and each time calculate the Wald statistic based on the TSLS estimator. Each time, reject the null hypothesis $H_0 : \beta_0 = 0$ if the Wald statistic is larger than the 5% asymptotic critical value. For each $\beta_0 \in S$ and each of the eight parameter combinations, report the finite sample rejection probabilities. (If $\beta_0 = 0$, you are reporting the rejection probability under the null, if $\beta_0 \neq 0$ you are reporting the finite sample power of the test against the particular alternative.)

(ii) Discuss your results. In particular, how do the results vary with K, ρ , and η ?

3. Using the same notation as in exercise 2., define

$$g_{i}(\beta) := (y_{i} - x_{i}'\beta)Z_{i}, \ G_{i} := (\partial g_{i}/\partial\beta)(\beta) = -Z_{i}x_{i}',$$

$$\widehat{g}(\beta) := \sum_{i=1}^{n} g_{i}(\beta)/n, \ \widehat{\Omega}(\beta) := \sum_{i=1}^{n} g_{i}(\beta)g_{i}(\beta)'/n,$$

$$D(\beta) := \sum_{i=1}^{n} (\widehat{g}(\beta)'\widehat{\Omega}(\beta)^{-1}g_{i}(\beta) - 1)G_{i}/n,$$

$$LM_{CUE}(\beta) := n\widehat{g}(\beta)'\widehat{\Omega}(\beta)^{-1}D(\beta)[D(\beta)'\widehat{\Omega}(\beta)^{-1}D(\beta)]^{-1}D(\beta)'\widehat{\Omega}(\beta)^{-1}\widehat{g}(\beta).$$

(i) Show that for $n \to \infty$ we have $LM_{CUE}(\beta_0) \to_d \chi^2_{\dim \beta_0}$, where β_0 is the true structural parameter vector. (Hint: First derive the asymptotic distribution of $n^{1/2}\widehat{g}(\beta_0)$ and then the probability limits of $D(\beta_0)$ and $\widehat{\Omega}(\beta_0)$. You can assume iid observations but not conditional homoskedasticity. State any additional assumptions you use.)

(ii) Redo the Monte Carlo exercise 2., using LM_{CUE} instead of the Wald statistic. Then, compare the performance of the two test statistics.

4. Prove that (i) $O_p(1)o_p(1) = o_p(1)$, (ii) $X_n \to_d X$, for a random variable X, implies $X_n = O_p(1)$, and (iii) discuss what the problem is with a Wald type hypothesis test of $H_0: h(\theta) = 0$ versus $H_1: h(\theta) \neq 0$ that rejects at nominal size α when the Wald test statistic W_n is *smaller* than the α quantile $\chi^2_{r,\alpha}$ of a chi-square distribution with r degress of freedom.