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May 14th, 2009 by Yang

1. Adding More Instruments in 2SLS Estimation

(i) Since Z is an n× n matrix, the projection matrix becomes an identity matrix.

Pz := Z(Z ′Z)−1Z ′ = ZZ−1(Z ′)−1Z ′ = In

Therefore,
β̂2SLS = (X ′PzX)−1X ′PzY = (X ′X)−1X ′Y = β̂OLS

(ii) Note that the asymptotic variances of the two estimators are given by

AV(β̂1) = σ2
(
Exiz

′
1i(Ez1iz

′
1i)
−1Ez1ix

′
i

)−1

AV(β̂2) = σ2
(
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2i(Ez2iz

′
2i)
−1Ez2ix

′
i

)−1

Hence, consistent estimators of these are

ÂVn(β̂1) = σ2
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= nσ2(X ′Pz1X)−1

ÂVn(β̂2) = σ2
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−1

= nσ2(X ′Pz2X)−1

Note that σ2 is the true variance of εi, conditionally homoskedastic. For any n, ÂVn(β̂1) ≥ ÂVn(β̂2)
a.s. in positive semidefinite sense. To see this, pick any n and any realization of random variables.
Since

ÂVn(β̂1)− ÂVn(β̂2) ≥ 0 ⇔
[
ÂVn(β̂2)

]−1
−

[
ÂVn(β̂1)

]−1
≥ 0

⇔ X ′Pz2X −X ′Pz1X ≥ 0

it suffices to prove that X ′Pz2X −X ′Pz1X is a positive semidefinite matrix. Note that

X ′Pz2X −X ′Pz1X = X ′Pz2Pz2X −X ′Pz2Pz1Pz2X

= X ′Pz2(I − Pz1)Pz2X

= X ′Pz2(I − Pz1)(I − Pz1)Pz2X

The first equality follows from the fact that Pz2 is idempotent, and that Pz2Pz1 = Pz1Pz2 = Pz1 since
Z2 includes Z1. The last equality holds since (I −Pz1) is idempotent. The expression has a quadratic
form, so X ′Pz2X −X ′Pz1X is positive semidefinite. Since this holds for every n and every realization
of random variables, this holds in the limit as well.

plimÂVn(β̂1) ≥ plimÂVn(β̂2)
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or equivalently,
AV(β̂1) ≥ AV(β̂2)

(iii) The statement is false. From (i), the (asymptotic) bias tends to go up as we use more instruments,
even though they satisfy the moment conditions. But the variance gets smaller as more instruments
are used provided that they are uncorrelated with the errors. We have verified this in (ii). So the choice
of the optimal number of instruments is subject to the tradeoff between the bias and the variance.1

2. Finite Sample Properties of OLS and LAD Estimators

Results are provided in the following table. Consider first the basement specification: n = 100, k = 2
and β = 0 ∈ R2. As shown in the class, when ui ∼ N(0, 1) (case 1), the OLS estimates are less
dispersed, when ui ∼ t3 (case 2), the LAD estimator works better, and when ui ∼ t1 (case 3), the
LAD estimator still works as well as in the other cases, but the OLS estimator suffers from huge
outliers. This is basically because the OLS estimator has the variance proportional to var(ui), which
has no impact on the variance of the LAD estimator theoretically. The ratio of the variances of the
two estimators is consistent with the ARE (asymptotic relative efficiency), which is defined as the
ratio of the asymptotic variances of the two estimators.

The mean biases of the two estimators are similar in case 1 and case 2, but the OLS estimator has a
huge mean bias in case 3 while the LAD estimator does not. In fact, the OLS estimator is inconsistent
when the error is Cauchy distributed, since the Cauchy distribution does not have the finite first
moment, which means that the crucial condition of the OLS model, Exiui = 0, is not satisfied. But
the median bias of the OLS estimator seems to be bounded, although it is still greater than that of
the LAD estimator.

Consier now the other scenarios. β affects the result very little. When the same realizations of xi and
ui are used, numerical values of the OLS estimator are not influenced by change of β at all. Those
of the LAD estimator change a little, which is likely due to the mulitple minimizers of the criterion
function. In contrast to the OLS model, the criterion function of the LAD model does not have a
unique minimzer. k seems to have a little effect on the performance of the two estimators. There is a
weak tendency that the variance of the LAD estimator gets less as k goes up. For too high k, the OLS
estimator suffers from low degrees of freedom. So we can see in some cases that the LAD estimator
has less variance than the OLS estimator. The bias seems to be unaffected. Larger n reduces the
variance. Note that the asymptotic variance will be n times the observed variance. It seems to remain
at the same level even if n gets larger. The ratio of the variances stays similar for different n, which
justifies the theory. The bias becomes less for larger n, which is reasonable.

1Note that the bias does not systematically (monotonically) increase in the number of instruments, so we may obtain
a less biased 2SLS estimator by including some instruments. But the bias can be calculated only when the true parameter
is known, so practically it is not possible to see whether the bias really goes up or down by doing so.
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TABLE1. Comparison of the OLS and the LAD estimators (the benchmark case)

*** n=100 / k=2 / beta=[ 0 0 ] ***

CASE 1: u~N(0,1) OLS LAD ratio

----------------------------------------------------------------

Mean Bias || 0.0033 0.0030 1.1048

Median Bias || 0.0053 0.0048 1.1100

Variance || 0.0097 0.0152 0.6387

M. S. Error || 0.0097 0.0152 0.6390

----------------------------------------------------------------

CASE 2: u~t(3) OLS LAD ratio

----------------------------------------------------------------

Mean Bias || 0.0075 0.0079 0.9483

Median Bias || -0.0001 0.0057 -0.0194

Variance || 0.0286 0.0194 1.4735

M. S. Error || 0.0287 0.0195 1.4717

----------------------------------------------------------------

CASE 3: u~Cauchy OLS LAD ratio

----------------------------------------------------------------

Mean Bias || 40.8846 -0.0041 -9923.9689

Median Bias || 0.0335 -0.0022 -15.0299

Variance || 1639890.1841 0.0298 55010457.3049

M. S. Error || 1639921.8409 0.0298 55035220.2315

----------------------------------------------------------------

TABLE 2. The Effect of β

*** n=100 / k=2 / beta=[ 1 1 ] *** *** n=100 / k=2 / beta=[ 1 2 ] ***

CASE 1: u~N(0,1) OLS LAD ratio OLS LAD

---------------------------------------------------------------- -----------------------------

Mean Bias || 0.0033 0.0030 1.0915 0.0033 0.0030

Median Bias || 0.0053 0.0046 1.1537 0.0053 0.0046

Variance || 0.0097 0.0153 0.6378 0.0097 0.0153

M. S. Error || 0.0097 0.0153 0.6381 0.0097 0.0153

---------------------------------------------------------------- -----------------------------

CASE 2: u~t(3) OLS LAD ratio OLS LAD

---------------------------------------------------------------- -----------------------------

Mean Bias || 0.0075 0.0077 0.9743 0.0075 0.0077

Median Bias || -0.0001 0.0048 -0.0232 -0.0001 0.0048

Variance || 0.0286 0.0194 1.4758 0.0286 0.0194

M. S. Error || 0.0287 0.0194 1.4742 0.0287 0.0194

---------------------------------------------------------------- -----------------------------

CASE 3: u~Cauchy OLS LAD ratio OLS LAD

---------------------------------------------------------------- -----------------------------

Mean Bias || 40.8846 -0.0041 -9894.9666 40.8846 -0.0041

Median Bias || 0.0335 -0.0019 -17.3639 0.0335 -0.0019

Variance || 1639890.1841 0.0299 54769039.6461 1639890.1841 0.0300

M. S. Error || 1639921.8409 0.0299 54793648.4479 1639921.8409 0.0299

---------------------------------------------------------------- -----------------------------
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TABLE 3. The Effect of k

*** n=100 / k=5 / beta=[ 0 0 0 0 0 ] *** *** n=100 / k=10 / beta=[ 0 ... 0 ] ***

CASE 1: u~N(0,1) OLS LAD ratio OLS LAD

---------------------------------------------------------------- -----------------------------

Mean Bias || 0.0023 -0.0006 -4.2359 -0.0009 0.0030

Median Bias || 0.0033 0.0027 1.2166 -0.0062 0.0055

Variance || 0.0104 0.0119 0.8757 0.0118 0.0102

M. S. Error || 0.0104 0.0119 0.8762 0.0118 0.0102

---------------------------------------------------------------- -----------------------------

CASE 2: u~t(3) OLS LAD ratio OLS LAD

---------------------------------------------------------------- -----------------------------

Mean Bias || 0.0023 0.0026 0.8889 -0.0089 -0.0020

Median Bias || -0.0012 0.0053 -0.2193 -0.0091 -0.0003

Variance || 0.0309 0.0139 2.2176 0.0323 0.0119

M. S. Error || 0.0309 0.0139 2.2169 0.0324 0.0119

---------------------------------------------------------------- -----------------------------

CASE 3: u~Cauchy OLS LAD ratio OLS LAD

---------------------------------------------------------------- -----------------------------

Mean Bias || -0.0759 -0.0046 16.4186 3.6157 0.0024

Median Bias || -0.0294 0.0034 -8.6046 -0.0230 0.0053

Variance || 83.0287 0.0225 3693.8097 32959.4862 0.0193

M. S. Error || 82.9515 0.0225 3690.5572 32939.5999 0.0193

---------------------------------------------------------------- -----------------------------

TABLE 4. The Effect of n

*** n=1000 / k=2 / beta=[ 0 0 ] *** *** n=10000 / k=2 / beta=[ 0 0 ] ***

CASE 1: u~N(0,1) OLS LAD ratio OLS LAD

---------------------------------------------------------------- -----------------------------

Mean Bias || -0.0003 0.0001 -5.1925 -0.0002 -0.0002

Median Bias || 0.0002 -0.0013 -0.1439 0.0001 -0.0000

Variance || 0.0010 0.0016 0.6226 0.0001 0.0002 (0.6274)

M. S. Error || 0.0010 0.0016 0.6226 0.0001 0.0002 (0.6274)

---------------------------------------------------------------- -----------------------------

CASE 2: u~t(3) OLS LAD ratio OLS LAD

---------------------------------------------------------------- -----------------------------

Mean Bias || 0.0002 0.0013 0.1625 -0.0004 0.0001

Median Bias || -0.0019 0.0007 -2.5116 -0.0000 0.0005

Variance || 0.0029 0.0019 1.5239 0.0003 0.0002 (1.6553)

M. S. Error || 0.0029 0.0019 1.5225 0.0003 0.0002 (1.6558)

---------------------------------------------------------------- -----------------------------

CASE 3: u~Cauchy OLS LAD ratio OLS LAD

---------------------------------------------------------------- -----------------------------

Mean Bias || -1.6025 -0.0001 13098.7920 0.2585 -0.0009

Median Bias || 0.0216 -0.0003 -71.0167 -0.0778 -0.0004

Variance || 6428.5969 0.0027 2406462.6118 590.8803 0.0002

M. S. Error || 6424.7362 0.0027 2407411.3199 590.3563 0.0002

---------------------------------------------------------------- -----------------------------
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3. True or False

(i) FALSE.
It is mainly because the size of the Wald test does not remain at the level α that we do not use it
when instruments are potentially weak. The power of the Wald test is high in many cases, compared
to that of the LM test or the LR test.

(ii) FALSE.
It may be consistent in some special cases. Consider the model

yi = x′iβ + z′iγ + εi

where Exiεi = 0. When we omit zi in the regression, we get

β̂n = (X ′X)−1X ′Y = (X ′X)−1X ′Xβ + (X ′X)−1X ′Zγ + (X ′X)−1X ′ε

and thus

β̂n − β =
( 1

n

n∑

i=1

xix
′
i

︸ ︷︷ ︸
p−→Exix′i

)−1( 1
n

n∑

i=1

xiz
′
i

︸ ︷︷ ︸
p−→Exiz′i

)
γ +

( 1
n

n∑

i=1

xix
′
i

︸ ︷︷ ︸
p−→Exix′i

)−1 1
n

n∑

i=1

xiεi

︸ ︷︷ ︸
p−→Exiεi=0

Besides the trivial case that γ = 0,2 β̂n is still consistent for β if Exiz
′
i = 0. In other words, if

the random variables xi and zi are orthogonal, then omitting zi in the regression does not cause the
problem.

(iii) FALSE.
The estimator obtained using suboptimal An in the GMM model is still consistent, as long as An

converges in probability to some matrix. We do not require optimality of An when we prove the
consistency of the estimator. Optimal weight matters only for the minimum of the asymptotic variance
among all consistent estimators.

(iv) FALSE.
The LR statistic is not easy to implement. We need to solve both the unrestricted minimization and
the restricted minimization problems. We also need to specify what cn is, by deriving theoretically
the ratio of Ω0 to B0. Although the formula of the LR statistic seems compact, the Wald statistic is
more intuitive and thus may be regarded as compact in that sense (especially when the hypothesis
is linear). The LM statistic has the most complicated one. The comparative advantage of the LR
statistic (and the LM statistic) is the better size property.

(v) TRUE.
2This means that the true model is yi = x′iβ + εi. This is not of our interest since there is no omitted regressor in

this case.
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Suppose Xn = op(1). We want to show that there exists ε > 0 such that for any M

lim sup
n→∞

Pr
(

1
|Xn| > M

)
≥ ε

Take ε = 0.5 and any M > 0. Then, by definition of op(1), there exists N such that for any n > N

Pr
(
|Xn| < 1

M

)
≥ ε

This is equivalent to

Pr
(

1
|Xn| > M

)
≥ ε

Therefore 1/Xn is not Op(1).

Another proof is as follows. Suppose 1/Xn = Op(1). We want to show that there exists ε > 0 such
that

lim
n→∞Pr(|Xn| > ε) 6= 0

By definition of Op(1), there exists M < ∞ such that

lim sup
n→∞

Pr
(

1
|Xn| ≥ M

)
< 0.5

Therefore
lim inf
n→∞ Pr

(
|Xn| > 1

M

)
= 1− lim sup

n→∞
Pr

(
|Xn| ≤ 1

M

)
> 0.5

Let ε = 1/M , then limn→∞ Pr(|Xn| > ε), if it exists, cannot be 0.

(vi) QUESTIONABLE.
First, it is not obvious whether an IQ score is indeed a relevant measure of ability affecting wage.
Moreover, it is highly likely that there is an ability which is not captured by an IQ score but still
affects wage. If it is correlated with education, including an IQ score as a regressor does not solve the
inconsistency problem completely. In fact, it is not only the intellectual ability that affects the year
of education. It would be better to use an IQ score as an instrument for education, since we would
rather believe that an IQ score is highly correlated with education, but not with the other abilities in
the error term. Of course, there might be objection to using it as an instrument as well.

4. Stationary Time Series

(a) Note that the non-causal AR(1) equation Xt = φXt−1 + Zt with Zt ∼ WN(0, σ2) and |φ| > 1 has
the following stationary solution.

Xt = −
∞∑

j=1

φ−jZt+j (1)

We can take two different approaches to show that the above solution also satisfies the causal AR(1)
equation Xt = φ−1Xt−1 + Z̃t as follows.
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1. Use the above solution to obtain Z̃t from the causal AR(1) equation and prove that Z̃t is indeed
a white noise process.

2. Obtain the solution to the causal AR(1) equation, and show that the two solutions are the same
stationary time series. This requires showing that the two solutions have the same mean and
autocovariance function.

Consider the 1st approach. Define Z̃t := Xt − φ−1Xt−1 where Xt is defined as in (1). This is indeed
a white noise process. To see this, note first that

EZ̃t = EXt − φ−1EXt−1 = 0

since EXt = 0 from (1). To check the second moment, find the autocavariance function of Xt as
follows. For an interger h ≥ 0,

γx(h) = EXtXt−h

= E



∞∑

j=1

φ−jZt+j

∞∑

k=1

φ−kZt−h+k




= E



∞∑

j=1

φ−jZt+j

∞∑

m=1−h

φ−m−hZt+m


 ← change m = k − h

=
∞∑

j=1

φ−2j−hEZ2
t+j ← EZsZt = 0 for s 6= t

= φ−h
∞∑

j=1

(φ−2)jσ2

= φ−h φ−2σ2

1− φ−2
=

σ2

φh(φ2 − 1)
(2)

Hence

EZ̃2
t = EX2

t + φ−2EX2
t−1 − 2φ−1EXtXt−1

= γx(0) + φ−2γx(0)− 2φ−1γx(1) =
σ2

φ2

and also for h > 0,

EZ̃tZ̃t−h = EXtXt−h − φ−1EXt−1Xt−h − φ−1EXtXt−h−1 + φ−2EXt−1Xt−h−1

= γx(h)− φ−1γx(h− 1)− φ−1γ(h + 1) + φ−2γx(h)

=
σ2

φh(φ2 − 1)
− σ2

φh(φ2 − 1)
− σ2

φh+2(φ2 − 1)
+

σ2

φh+2(φ2 − 1)
= 0

as desired. Defining σ̃2 := φ−2σ2 completes the proof.
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Now consider the 2nd approach. The causal AR(1) equation has the following solution.

Xt =
∞∑

j=0

(φ−1)jZ̃t−j (3)

Now it suffices to show that this also has mean 0 and autocovariance function as in (2). It is easy to
check that

EXt =
∞∑

j=0

(φ−1)jEZ̃t−j = 0

The autocovariance function is hence defined as follows. For an integer h ≥ 0,

γx(h) = EXtXt+h

= E



∞∑

j=0

(φ−1)jZ̃t−j

∞∑

k=0

(φ−1)kZ̃t+h−k




= E



∞∑

j=0

(φ−1)jZ̃t−j

∞∑

m=−h

(φ−1)h+mZ̃t−m


 ← change m = k − h

=
∞∑

j=0

(φ−1)h+2jEZ̃2
t−j ← EZ̃sZ̃t = 0 for s 6= t

= φ−h
∞∑

j=0

(φ−2)j σ̃2

= φ−h σ̃2

1− φ−2
=

σ̃2

φh−2(φ2 − 1)
(4)

Note that the two autocovariance functions obtained in (2) and (4) are the same when σ̃2 = φ−2σ2,
which completes the proof.

(b) Let φx(·) and φy(·) be polynomials of order p. Then two independent AR(p) processes Xt and Yt

can be defined as

φx(L)Xt = εxt

φy(L)Yt = εyt

where εxt ∼ WN(0, σ2
x) and εyt ∼ WN(0, σ2

y) are independent white noise processes. Define Zt :=
Xt + Yt, then,

φx(L)φy(L)Zt = φx(L)φy(L)Xt + φx(L)φy(L)Yt

So
φx(L)φy(L)Zt = φy(L)εxt + φx(L)εyt (5)

If we can write this as
φz(L)Zt = θ(L)εzt
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with φz(·) a polynomial of order 2p, θ(·) a polynomial of order p, and εzt a white noise process, the proof
completes. First, define φz(z) := φx(z)φy(z), then it is a polynomial of order 2p, so the LHS of (5) is
an AR(2p) representation. Next, we want to find εzt and θ(·) such that θ(L)εzt = φy(L)εxt +φx(L)εyt.
The equality means that both time series have the same mean and autocovariance function.3 It is
immediately verified that they have the same mean. The condition on autocovariance function defines
the following system of p + 1 equations.

var(θ(L)εzt) = var(φy(L)εxt + φx(L)εyt)

cov(θ(L)εzt, θ(L)εzt−1) = cov(φy(L)εxt, φy(L)εxt−1) + cov(φx(L)εyt, φx(L)εyt−1)
...

cov(θ(L)εzt, θ(L)εzt−p) = cov(φy(L)εxt, φy(L)εxt−p) + cov(φx(L)εyt, φx(L)εyt−p)

The covariance between the terms with more than p lags is 0, since φy(L)εxt and φx(L)εyt are inde-
pendent MA(p) processes. Writing the equations explicitly,

(1 + θ2
1 + · · ·+ θ2

p)σ
2
z = (1 + φ2

y1 + · · ·φ2
yp)σ

2
x + (1 + φ2

x1 + · · ·φ2
xp)σ

2
y

(θ1 + θ1θ2 + · · ·+ θp−1θp)σ2
z = (φy1 + φy1φy2 + · · ·+ φyp−1φyp)σ2

x

+ (φx1 + φx1φx2 + · · ·+ φxp−1φxp)σ2
y

...

θpσ
2
z = φypσ

2
x + φxpσ

2
y

There are p+1 equations and p+1 unknowns θ1, · · · , θp and σ2
z , so we can find such θ(·) and εzt. This

implies that the RHS of (5) is an MA(p) representation. Therefore the equation (5) actually defines
an ARMA(2p, p) process.

The sum of two independent MA(p) processes is an MA(p) process. This is already proven in the
above argument, since the choice of φx(·), φy(·), εxt and εyt are arbitrary.

3Another way to claim the equality is using a similar argument as in method 1 of (a). This requires definition of θ(·),
inversion of it and proof of εzt being a white noise process. Invertibility of an MA process is not covered, so we skip this
method.
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