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Problem Set VI (due Wed 5/20/09)

1. Let fytg be a stationary AR(2) process generated by the di¤erence equa-
tion

(1� �B)(1� �B)yt = "t;

where the f"tg are white noise. Assume � 6= � and both parameters are less than
one in absolute value. Find the coe¢ cients cj such that yt has the representation

yt =
1P
j=0

cj"t�j :

2. (a) Given two observations y1 and y2 from the causal AR(1) process

Yt � �Yt�1 = Ut; fUtg � iidN(0; �2);

such that jy1j 6= jy2j; �nd the maximum likelihood estimates of � and �2:

(b) Let fXtg be a stationary process with mean �: Show that the optimal
linear forecast of Xn+h based on 1; X1; :::; Xn equals � plus the optimal linear
forecast of Yn+h based on Y1; :::; Yn; where the zero mean process fYtg is de�ned
by Yt := Xt � � and where h is a �xed integer � 1:

3. Assume the model is given by

Yt = �+ �Yt�1 + Ut for t = 1; :::; T;

Ut � iid N(0; �2) for �2 > 0;

Y0 � N(�; �2=(1� �2)):

For T = 100; � = :5; � = 0; :3; :6; :9; :99 and �2 = 1 generate R = 2000 time
series according to this model. Each time, calculate the OLS estimator b� of
� (from a regression of Yt on a constant and Yt�1). For the �ve simulation
designs, report mean and median bias, standard deviation and RMSE (root
mean squared error) of b�. Discuss your �ndings on the �nite-sample behavior
of the OLS estimator. Calculate nominal 95% con�dence intervals (CI) for �
obtained from inverting a t�test. Report the empirical coverage probability of
the CI. Discuss your �ndings.

4. Suppose that an MA(2) model is estimated when the second moving
average parameter, �2; is actually equal to zero. Find an expression for the
relative e¢ ciency of the resulting estimator of �1 as compared with the estimator
obtained from an MA(1) model.
Hints:
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Equation (5.5.4) in Hamilton for the conditional likelihood of an MA(q)
process (conditioned on "0 = 0; :::; "�q+1 = 0; assuming � = 0 for simplicity)
reads

L = const� T
2
log �2 � 1

2�2
S(�); for

S(�) : =
PT

t=1 "(�)
2
t ;

"(�)t : = yt � �1"t�1 � :::� �q"t�q; (1)

� : = (�1; :::; �q):

Leaving out the argument � in "(�)t (to simplify notation) we have

@L=@� = � 1

�2
PT

t=1(@"t=@�)"t =
1

�2
PT

t=1 xt"t 2 R
1�q; where

xt : = �(@"t=@�):

From ML theory we know how to express the asymptotic variance of the ML
estimators in terms of the information matrix

E(@L=@�)0(@L=@�) = E(
1

�2
PT

t=1 xt"t)
0 1

�2
PT

s=1 xs"s

=
1

�4
PT

t=1Ex
0
txtE"

2
t

= E
1

�2
PT

t=1 x
0
txt:

In fact, the asymptotic variance of the MLE estimator is the limit of T -times
the inverse of this matrix, limT!1T (E

1
�2

PT
t=1 x

0
txt)

�1 or the inverse of the
probability limit of 1

�2
1
T

PT
t=1 x

0
txt:

The case of MA(1):
By (1), we have

(@"t=@�) = ��1(@"t�1=@�)� "t�1
and thus it follows that xt follows an AR(1):

xt = ��1xt�1 + "t�1:

Therefore
p limT�1

PT
t=1 xtx

0
t = varxt = �

2=(1� �21);

the formula for the variance of an AR(1). Therefore, using the above information
matrix formula, it follows that the asymptotic variance of the conditional MLE
of �1 is given by

(1� �21):

Generalize this approach to MA(2) and you are done.
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