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1. Causal Expression of AR(2)

Let φ(z) := (1− αz)(1− βz). Zeros of φ(·) are 1
α and 1

β , both of which are greater than 1 in absolute
value by the assumption in the question. By the theorem mentioned in the lecture, we can write yt as
causal expression

yt =
∞∑

j=0

cjεt−j =
1

φ(L)
εt

Note that for |z| < 1,

1
φ(z)

=
1

1− αz

1
1− βz

=
(
1 + αz + α2z2 + · · · ) (

1 + βz + β2z2 + · · · )

and thus

yt =
(
1 + αL + α2L2 + · · · ) (

1 + βL + β2L2 + · · · ) εt

=
(
1 + (α + β)L + (α2 + αβ + β2)L2 + · · · ) εt

=




∞∑

j=0

(
j∑

k=0

αkβj−k

)
Lj


 εt

=
∞∑

j=0

j∑

k=0

αkβj−kεt−j

Therefore,

cj =
j∑

k=0

αkβj−k

2. Estimation of AR(1)

We have observations (y1, y2). We need to obtain the distribution of y1 to do the MLE. Let us guess
y1 ∼ N(µy, σ

2
y). Since y2 = αy1 + εt,

y2 ∼ N
(
αµy, α

2σ2
y + σ2

)

The AR(1) model is stationary, so every observation has the same mean and variance. This implies
that the unconditional mean and variance of y2 is the same with those of y1. Therefore,

αµy = µy

α2σ2
y + σ2 = σ2

y
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which implies that

y1 ∼ N

(
0,

σ2

1− α2

)

The likelihood function is now

L(α, σ2) = f(y1; α, σ2)f(y2|y1; α, σ2)

=
1√

2πσ2/(1− α2)
exp

(
− y2

1

2σ2/(1− α2)

)
1√

2πσ2
exp

(
−(y2 − φy1)2

2σ2

)

and thus

L(α, σ2) = log f(y0;α, σ2) + log f(y2|y1;α, σ2)

=
(
−1

2
log 2π − 1

2
log

σ2

1− α2
− y2

1

2σ2/(1− α2)

)
+

(
−1

2
log 2π − 1

2
log σ2 − (y2 − αy1)2

2σ2

)

= − log 2π − log σ2 +
1
2

log(1− α2)− y2
1(1− α2)

2σ2
− (y2 − αy1)2

2σ2

Obtain the FOC’s as follows.

− α

1− α2
+

y2
1α

σ2
+

(y2 − αy1)y1

σ2
= 0

− 1
σ2

+
y2
1(1− α2)

2σ4
+

(y2 − αy1)2

2σ4
= 0

The equations can be simplified as follows.

−ασ2 + (1− α2)y1y2 = 0

−2σ2 + y2
1 − 2αy1y2 + y2

2 = 0

From the second equation, obtain an expression of σ2 in terms of y1, y2 and α as

σ2 =
y2
1 − 2αy1y2 + y2

2

2

and plug in into the first equation, then

−α

(
y2
1 − 2αy1y2 + y2

2

2

)
+ (1− α2)y1y2 = 0

or
−α

(
y2
1 + y2

2

)
+ 2y1y2 = 0

and thus
α̂ =

2y1y2

y2
1 + y2

2

Plug this back into the equations, then

σ̂2 =
(y2

1 − y2
2)

2

2(y2
1 + y2

2)
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3. Size of T-test in AR(1) Model

Let c = µ, then yt = c + αyt−1 + ut. The OLS estimator is given by

(
ĉ
α̂

)
=

[
T∑

t=1

(
1

yt−1

) (
1 yt−1

)
]−1 T∑

t=1

(
1

yt−1

)
yt

and the variance is estimated by

var(α̂) = σ̂2

[
T∑

t=1

(
1

yt−1

)(
1 yt−1

)
]−1

where σ̂2 := 1
T−2

∑T
t=1(yt − ĉ− α̂yt−1)2. The nominal 95% two-sided CI for α is obtained as follows.

CI0.95 =
[
α̂− 1.96

√
var(α̂), α̂ + 1.96

√
var(α̂)

]

Then the empirical coverage probability P̂r(α ∈ CI0.95) = 1
R

∑R
r=1 1(α ∈ CIr

0.95) is given as follows.

--------------------------------------------------------------------

True alpha 0.00 0.30 0.60 0.90 0.99

--------------------------------------------------------------------

Mean Bias -0.0136 -0.0202 -0.0274 -0.0320 -0.0070

Median Bias -0.0170 -0.0181 -0.0203 -0.0252 -0.0053

St. Dev. 0.1000 0.0920 0.0822 0.0503 0.0134

R.M.S.E. 0.1009 0.0941 0.0866 0.0596 0.0152

Cov. Prob. 0.9495 0.9540 0.9505 0.9290 0.9230

--------------------------------------------------------------------

In fact, there seems to exist no problem. Note that, however, the given process is nonstationary, since
the unconditional mean and variance of yt depends on t. Correct this by letting c = µ(1− α) so that

yt = µ(1− α) + αyt−1 + ut

then yt ∼ N
(
µ, σ2

1−α2

)
for any t as easily verified. Use this to generate data and estimate α, then

we get the following result. Now we can see that when α → 1, the empirical coverage probability is
strictly less than 0.95. This means that we obtain too narrow confidence intervals as α → 1. Simply
inverting a t-test is thus not a good idea to obtain CI when α is believed to be close to 1.

--------------------------------------------------------------------

True alpha 0.00 0.30 0.60 0.90 0.99

--------------------------------------------------------------------

Mean Bias -0.0136 -0.0202 -0.0275 -0.0386 -0.0496

Median Bias -0.0170 -0.0182 -0.0199 -0.0306 -0.0406

St. Dev. 0.1000 0.0921 0.0824 0.0553 0.0439

R.M.S.E. 0.1009 0.0942 0.0869 0.0674 0.0662

Cov. Prob. 0.9495 0.9555 0.9480 0.9225 0.7845

--------------------------------------------------------------------
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4. Inclusion of Irrelevant Parameter

Note first that in the hints, θ is a row vector, and thus xt is also a row vector. For completeness, let
us begin from the scratch. The conditional likelihood of an MA(q) process is given by

L(θ) = −T

2
log 2π − T

2
log σ2 −

T∑

t=1

εt(θ)2

2σ2

where

εt(θ) := yt − θ1εt−1(θ)− · · · − θ1εt−q(θ)

θ := (θ1, · · · , θq)

The first order conditions with respect to θ read as

0 =
∂L(θ)

∂θ
= − 1

σ2

T∑

t=1

∂εt(θ)
∂θ

εt = − 1
σ2

T∑

t=1

xtεt

where xt := −∂εt(θ)
∂θ . So the information matrix is given by

E

[
∂L
∂θ′

∂L
∂θ

]
=

1
σ4

E

[
T∑

t=1

x′tεt

T∑

s=1

xsεs

]

=
1
σ4

T∑

t=1

T∑

s=1

E
[
x′txsεtεs

]

=
1
σ4

T∑

t=1

E
[
x′txt

]
Eε2

t =
1
σ2

T∑

t=1

Ex′txt

The third equality holds by the following. Note that

xt = −∂εt(θ)
∂θ

= (εt−1, · · · , εt−q) + θ1
∂εt−1

∂θ
+ · · ·+ θq

∂εt−q

∂θ
= (εt−1, · · · , εt−q)− θ1xt−1 − · · · − θqxt−q

xt is an AR(q) process and thus can be expressed as a weigthed sum of past errors under some
condition.1 For t > s, xt, xs and εs are independent of εt, so E[x′txsεtεs] = E[x′txsεs]Eεt = 0. For
t < s, xt, xs and εt are independent of εs, so E[x′txsεtεs] = E[x′txsεt]Eεs = 0. Since the asymptotic
variance of θ̂MLE is the limit of T times the inverse of the information matrix,

AV(θ̂MLE) = lim
T→∞

T

(
1
σ2

T∑

t=1

Ex′txt

)−1

= lim
T→∞

(
1
σ2

E

[
1
T

T∑

t=1

x′txt

])−1

= σ2

(
plim

1
T

T∑

t=1

x′txt

)−1

= σ2(Ex′txt)−1

1The condition is invertibility of the MA(q) process of yt, which is equivalent to causality of the AR(q) process of xt.
If xt is noncausal stationary, we may use a noncausal expression to claim E[x′txsεtεs] = 0 for t 6= s.
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where the third equality holds by the (dependent version of) law of large numbers and the continuous
mapping theorem, and the last equality holds by identical distribution of xt.

(i) MA(1) model

Consider yt = εt + θ1εt−1, then xt := − ∂εt
∂θ1

= −θ1xt−1 + εt−1 is an AR(1) process. As is well known,
the variance of the AR(1) process is

Ex2
t =

σ2

1− θ2
1

so the asymptotic variance of θ̂1 is

AV(θ̂1) = σ2(Ex2
t )
−1 = 1− θ2

1

(ii) MA(2) model with θ2 = 0

Consider yt = εt + θ1εt−1 + θ2εt−2. We estimate both θ1 and θ2, although θ2 is actually 0.

xt := −∂εt(θ)
∂θ

= (εt−1, εt−2)− θ1xt−1 − θ2xt−2

is an AR(2) process with θ2 = 0. This implies that xt is actually an AR(1) process.2

xt = −θ1xt−1 + (εt−1, εt−2)

So

Ex′txt = θ2
1Ex′t−1xt−1 + E

[
ε2
t−1 εt−1εt−2

εt−2εt−1 ε2
t−2

]
− θ1E

[
x′t−1(εt−1, εt−2)

]− θ1E

[(
εt−1

εt−2

)
xt−1

]

2We may obtain Ex′txt from an AR(2) process, and use θ2 = 0 later. Since x′txt = [(εt−1, εt−2)
′ − θ1x

′
t−1 − θ2x

′
t−2] ·

[(εt−1, εt−2)− θ1xt−1 − θ2xt−2],

Ex′txt = θ2
1Ex′t−1xt−1 + θ2

2Ex′t−2xt−2 + θ1θ2Ex′t−1xt−2 + θ1θ2Ex′t−2xt−1 − · · ·
Also since x′txt−1 = [(εt−1, εt−2)

′ − θ1x
′
t−1 − θ2x

′
t−2] xt−1,

Ex′txt−1 = E(εt−1, εt−2)
′xt−1 − θ1Ex′t−1xt−1 − θ2Ex′t−2xt−1

Arranging the above two equations and making use of stationarity of xt, we have

(1− θ2
1 − θ2

2)Ex′txt = θ1θ2Ex′txt−1 + θ1θ2Ex′t−1xt +

(
σ2 −θ1σ

2

−θ1σ
2 σ2

)

Ex′txt−1 = −θ1Ex′txt − θ2Ex′t−1xt +

(
0 0
σ2 0

)

Ex′t−1xt = −θ1Ex′txt − θ2Ex′txt−1 +

(
0 σ2

0 0

)

Solving the system of equations simultaneously,

Ex′txt =
σ2

(1− θ2)[(1 + θ2)2 − θ2
1]

(
1 + θ2 −θ1

−θ1 1 + θ2

)

Now use θ2 = 0, then this simplifies to Ex′txt = σ2

1−θ2
1

(
1 −θ1
−θ1 1

)
, which is the same as we get using the other method.
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By stationarity of xt, Ex′txt = Ex′t−1xt−1. Note also that

E

[
ε2
t−1 εt−1εt−2

εt−2εt−1 ε2
t−2

]
=

(
σ2 0
0 σ2

)

and that

E

[(
εt−1

εt−2

)
xt−1

]
= E

[(
εt−1

εt−2

) (
εt−2 εt−3

)]− θ1 E

[(
εt−1

εt−2

)
xt−2

]

︸ ︷︷ ︸
=0 ∵ xt−2⊥(εt−1,εt−2)

= E

[
εt−1εt−2 εt−1εt−3

ε2
t−2 εt−2εt−3

]

=
(

0 0
σ2 0

)

Therefore
(1− θ2

1)Ex′txt =
(

σ2 −θ1σ
2

−θ1σ
2 σ2

)

or equivalently,

Ex′txt =
σ2

1− θ2
1

(
1 −θ1

−θ1 1

)

So the asymptotic variance of θ̂MLE is

AV(θ̂MLE) = σ2(Ex′txt)−1 =
(

1 θ1

θ1 1

)

The asymptotic variance of θ̂1 is 1.

Asymptotic Relative Efficiency

From the above result, the asymptotic relative efficiency of θ̂1 obtained from MA(2) model with θ2 = 0
to that obtained from MA(1) model is

ARE =
1− θ2

1

1
= 1− θ2

1

This is less than 1. Estimating irrelevant parameter θ2 increases the variance of θ̂1, and thus is
relatively inefficient.
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