Problem Set 6 Solution
May 21st, 2009 by Yang

1. Causal Expression of AR(2)

Let $\phi(z):=(1-\alpha z)(1-\beta z)$. Zeros of $\phi(\cdot)$ are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$, both of which are greater than 1 in absolute value by the assumption in the question. By the theorem mentioned in the lecture, we can write y_{t} as causal expression

$$
y_{t}=\sum_{j=0}^{\infty} c_{j} \varepsilon_{t-j}=\frac{1}{\phi(L)} \varepsilon_{t}
$$

Note that for $|z|<1$,

$$
\frac{1}{\phi(z)}=\frac{1}{1-\alpha z} \frac{1}{1-\beta z}=\left(1+\alpha z+\alpha^{2} z^{2}+\cdots\right)\left(1+\beta z+\beta^{2} z^{2}+\cdots\right)
$$

and thus

$$
\begin{aligned}
y_{t} & =\left(1+\alpha L+\alpha^{2} L^{2}+\cdots\right)\left(1+\beta L+\beta^{2} L^{2}+\cdots\right) \varepsilon_{t} \\
& =\left(1+(\alpha+\beta) L+\left(\alpha^{2}+\alpha \beta+\beta^{2}\right) L^{2}+\cdots\right) \varepsilon_{t} \\
& =\left(\sum_{j=0}^{\infty}\left(\sum_{k=0}^{j} \alpha^{k} \beta^{j-k}\right) L^{j}\right) \varepsilon_{t} \\
& =\sum_{j=0}^{\infty} \sum_{k=0}^{j} \alpha^{k} \beta^{j-k} \varepsilon_{t-j}
\end{aligned}
$$

Therefore,

$$
c_{j}=\sum_{k=0}^{j} \alpha^{k} \beta^{j-k}
$$

2. Estimation of $\operatorname{AR}(1)$

We have observations $\left(y_{1}, y_{2}\right)$. We need to obtain the distribution of y_{1} to do the MLE. Let us guess $y_{1} \sim N\left(\mu_{y}, \sigma_{y}^{2}\right)$. Since $y_{2}=\alpha y_{1}+\varepsilon_{t}$,

$$
y_{2} \sim N\left(\alpha \mu_{y}, \alpha^{2} \sigma_{y}^{2}+\sigma^{2}\right)
$$

The $\operatorname{AR}(1)$ model is stationary, so every observation has the same mean and variance. This implies that the unconditional mean and variance of y_{2} is the same with those of y_{1}. Therefore,

$$
\begin{aligned}
\alpha \mu_{y} & =\mu_{y} \\
\alpha^{2} \sigma_{y}^{2}+\sigma^{2} & =\sigma_{y}^{2}
\end{aligned}
$$

which implies that

$$
y_{1} \sim N\left(0, \frac{\sigma^{2}}{1-\alpha^{2}}\right)
$$

The likelihood function is now

$$
\begin{aligned}
L\left(\alpha, \sigma^{2}\right) & =f\left(y_{1} ; \alpha, \sigma^{2}\right) f\left(y_{2} \mid y_{1} ; \alpha, \sigma^{2}\right) \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2} /\left(1-\alpha^{2}\right)}} \exp \left(-\frac{y_{1}^{2}}{2 \sigma^{2} /\left(1-\alpha^{2}\right)}\right) \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{2}-\phi y_{1}\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

and thus

$$
\begin{aligned}
\mathcal{L}\left(\alpha, \sigma^{2}\right) & =\log f\left(y_{0} ; \alpha, \sigma^{2}\right)+\log f\left(y_{2} \mid y_{1} ; \alpha, \sigma^{2}\right) \\
& =\left(-\frac{1}{2} \log 2 \pi-\frac{1}{2} \log \frac{\sigma^{2}}{1-\alpha^{2}}-\frac{y_{1}^{2}}{2 \sigma^{2} /\left(1-\alpha^{2}\right)}\right)+\left(-\frac{1}{2} \log 2 \pi-\frac{1}{2} \log \sigma^{2}-\frac{\left(y_{2}-\alpha y_{1}\right)^{2}}{2 \sigma^{2}}\right) \\
& =-\log 2 \pi-\log \sigma^{2}+\frac{1}{2} \log \left(1-\alpha^{2}\right)-\frac{y_{1}^{2}\left(1-\alpha^{2}\right)}{2 \sigma^{2}}-\frac{\left(y_{2}-\alpha y_{1}\right)^{2}}{2 \sigma^{2}}
\end{aligned}
$$

Obtain the FOC's as follows.

$$
\begin{aligned}
-\frac{\alpha}{1-\alpha^{2}}+\frac{y_{1}^{2} \alpha}{\sigma^{2}}+\frac{\left(y_{2}-\alpha y_{1}\right) y_{1}}{\sigma^{2}} & =0 \\
-\frac{1}{\sigma^{2}}+\frac{y_{1}^{2}\left(1-\alpha^{2}\right)}{2 \sigma^{4}}+\frac{\left(y_{2}-\alpha y_{1}\right)^{2}}{2 \sigma^{4}} & =0
\end{aligned}
$$

The equations can be simplified as follows.

$$
\begin{aligned}
-\alpha \sigma^{2}+\left(1-\alpha^{2}\right) y_{1} y_{2} & =0 \\
-2 \sigma^{2}+y_{1}^{2}-2 \alpha y_{1} y_{2}+y_{2}^{2} & =0
\end{aligned}
$$

From the second equation, obtain an expression of σ^{2} in terms of y_{1}, y_{2} and α as

$$
\sigma^{2}=\frac{y_{1}^{2}-2 \alpha y_{1} y_{2}+y_{2}^{2}}{2}
$$

and plug in into the first equation, then

$$
-\alpha\left(\frac{y_{1}^{2}-2 \alpha y_{1} y_{2}+y_{2}^{2}}{2}\right)+\left(1-\alpha^{2}\right) y_{1} y_{2}=0
$$

or

$$
-\alpha\left(y_{1}^{2}+y_{2}^{2}\right)+2 y_{1} y_{2}=0
$$

and thus

$$
\widehat{\alpha}=\frac{2 y_{1} y_{2}}{y_{1}^{2}+y_{2}^{2}}
$$

Plug this back into the equations, then

$$
\widehat{\sigma}^{2}=\frac{\left(y_{1}^{2}-y_{2}^{2}\right)^{2}}{2\left(y_{1}^{2}+y_{2}^{2}\right)}
$$

3. Size of T-test in AR(1) Model

Let $c=\mu$, then $y_{t}=c+\alpha y_{t-1}+u_{t}$. The OLS estimator is given by

$$
\binom{\widehat{c}}{\widehat{\alpha}}=\left[\sum_{t=1}^{T}\binom{1}{y_{t-1}}\left(\begin{array}{ll}
1 & y_{t-1}
\end{array}\right)\right]^{-1} \sum_{t=1}^{T}\binom{1}{y_{t-1}} y_{t}
$$

and the variance is estimated by

$$
\operatorname{var}(\widehat{\alpha})=\widehat{\sigma}^{2}\left[\sum_{t=1}^{T}\binom{1}{y_{t-1}}\left(\begin{array}{ll}
1 & y_{t-1}
\end{array}\right)\right]^{-1}
$$

where $\widehat{\sigma}^{2}:=\frac{1}{T-2} \sum_{t=1}^{T}\left(y_{t}-\widehat{c}-\widehat{\alpha} y_{t-1}\right)^{2}$. The nominal 95% two-sided CI for α is obtained as follows.

$$
\mathrm{CI}_{0.95}=[\widehat{\alpha}-1.96 \sqrt{\operatorname{var}(\widehat{\alpha})}, \widehat{\alpha}+1.96 \sqrt{\operatorname{var}(\widehat{\alpha})}]
$$

Then the empirical coverage probability $\widehat{\operatorname{Pr}}\left(\alpha \in C I_{0.95}\right)=\frac{1}{R} \sum_{r=1}^{R} 1\left(\alpha \in C I_{0.95}^{r}\right)$ is given as follows.

True alpha	0.00	0.30	0.60	0.90	0.99
Mean Bias	-0.0136	-0.0202	-0.0274	-0.0320	-0.0070
Median Bias	-0.0170	-0.0181	-0.0203	-0.0252	-0.0053
St. Dev.	0.1000	0.0920	0.0822	0.0503	0.0134
R.M.S.E.	0.1009	0.0941	0.0866	0.0596	0.0152
Cov. Prob.	0.9495	0.9540	0.9505	0.9290	0.9230

In fact, there seems to exist no problem. Note that, however, the given process is nonstationary, since the unconditional mean and variance of y_{t} depends on t. Correct this by letting $c=\mu(1-\alpha)$ so that

$$
y_{t}=\mu(1-\alpha)+\alpha y_{t-1}+u_{t}
$$

then $y_{t} \sim N\left(\mu, \frac{\sigma^{2}}{1-\alpha^{2}}\right)$ for any t as easily verified. Use this to generate data and estimate α, then we get the following result. Now we can see that when $\alpha \rightarrow 1$, the empirical coverage probability is strictly less than 0.95 . This means that we obtain too narrow confidence intervals as $\alpha \rightarrow 1$. Simply inverting a t-test is thus not a good idea to obtain CI when α is believed to be close to 1 .

True alpha	0.00	0.30	0.60	0.90	0.99
Mean Bias	-0.0136	-0.0202	-0.0275	-0.0386	-0.0496
Median Bias	-0.0170	-0.0182	-0.0199	-0.0306	-0.0406
St. Dev.	0.1000	0.0921	0.0824	0.0553	0.0439
R.M.S.E.	0.1009	0.0942	0.0869	0.0674	0.0662
Cov. Prob.	0.9495	0.9555	0.9480	0.9225	0.7845

4. Inclusion of Irrelevant Parameter

Note first that in the hints, θ is a row vector, and thus x_{t} is also a row vector. For completeness, let us begin from the scratch. The conditional likelihood of an MA (q) process is given by

$$
\mathcal{L}(\theta)=-\frac{T}{2} \log 2 \pi-\frac{T}{2} \log \sigma^{2}-\sum_{t=1}^{T} \frac{\varepsilon_{t}(\theta)^{2}}{2 \sigma^{2}}
$$

where

$$
\begin{aligned}
\varepsilon_{t}(\theta) & :=y_{t}-\theta_{1} \varepsilon_{t-1}(\theta)-\cdots-\theta_{1} \varepsilon_{t-q}(\theta) \\
\theta & :=\left(\theta_{1}, \cdots, \theta_{q}\right)
\end{aligned}
$$

The first order conditions with respect to θ read as

$$
0=\frac{\partial \mathcal{L}(\theta)}{\partial \theta}=-\frac{1}{\sigma^{2}} \sum_{t=1}^{T} \frac{\partial \varepsilon_{t}(\theta)}{\partial \theta} \varepsilon_{t}=-\frac{1}{\sigma^{2}} \sum_{t=1}^{T} x_{t} \varepsilon_{t}
$$

where $x_{t}:=-\frac{\partial \varepsilon_{t}(\theta)}{\partial \theta}$. So the information matrix is given by

$$
\begin{aligned}
E\left[\frac{\partial \mathcal{L}}{\partial \theta^{\prime}} \frac{\partial \mathcal{L}}{\partial \theta}\right] & =\frac{1}{\sigma^{4}} E\left[\sum_{t=1}^{T} x_{t}^{\prime} \varepsilon_{t} \sum_{s=1}^{T} x_{s} \varepsilon_{s}\right] \\
& =\frac{1}{\sigma^{4}} \sum_{t=1}^{T} \sum_{s=1}^{T} E\left[x_{t}^{\prime} x_{s} \varepsilon_{t} \varepsilon_{s}\right] \\
& =\frac{1}{\sigma^{4}} \sum_{t=1}^{T} E\left[x_{t}^{\prime} x_{t}\right] E \varepsilon_{t}^{2}=\frac{1}{\sigma^{2}} \sum_{t=1}^{T} E x_{t}^{\prime} x_{t}
\end{aligned}
$$

The third equality holds by the following. Note that

$$
\begin{aligned}
x_{t}=-\frac{\partial \varepsilon_{t}(\theta)}{\partial \theta} & =\left(\varepsilon_{t-1}, \cdots, \varepsilon_{t-q}\right)+\theta_{1} \frac{\partial \varepsilon_{t-1}}{\partial \theta}+\cdots+\theta_{q} \frac{\partial \varepsilon_{t-q}}{\partial \theta} \\
& =\left(\varepsilon_{t-1}, \cdots, \varepsilon_{t-q}\right)-\theta_{1} x_{t-1}-\cdots-\theta_{q} x_{t-q}
\end{aligned}
$$

x_{t} is an $\operatorname{AR}(q)$ process and thus can be expressed as a weigthed sum of past errors under some condition. ${ }^{1}$ For $t>s, x_{t}, x_{s}$ and ε_{s} are independent of ε_{t}, so $E\left[x_{t}^{\prime} x_{s} \varepsilon_{t} \varepsilon_{s}\right]=E\left[x_{t}^{\prime} x_{s} \varepsilon_{s}\right] E \varepsilon_{t}=0$. For $t<s, x_{t}, x_{s}$ and ε_{t} are independent of ε_{s}, so $E\left[x_{t}^{\prime} x_{s} \varepsilon_{t} \varepsilon_{s}\right]=E\left[x_{t}^{\prime} x_{s} \varepsilon_{t}\right] E \varepsilon_{s}=0$. Since the asymptotic variance of $\widehat{\theta}_{M L E}$ is the limit of T times the inverse of the information matrix,

$$
\begin{aligned}
\operatorname{AV}\left(\widehat{\theta}_{M L E}\right) & =\lim _{T \rightarrow \infty} T\left(\frac{1}{\sigma^{2}} \sum_{t=1}^{T} E x_{t}^{\prime} x_{t}\right)^{-1} \\
& =\lim _{T \rightarrow \infty}\left(\frac{1}{\sigma^{2}} E\left[\frac{1}{T} \sum_{t=1}^{T} x_{t}^{\prime} x_{t}\right]\right)^{-1} \\
& =\sigma^{2}\left(\operatorname{plim} \frac{1}{T} \sum_{t=1}^{T} x_{t}^{\prime} x_{t}\right)^{-1}=\sigma^{2}\left(E x_{t}^{\prime} x_{t}\right)^{-1}
\end{aligned}
$$

[^0]where the third equality holds by the (dependent version of) law of large numbers and the continuous mapping theorem, and the last equality holds by identical distribution of x_{t}.

(i) MA(1) model

Consider $y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}$, then $x_{t}:=-\frac{\partial \varepsilon_{t}}{\partial \theta_{1}}=-\theta_{1} x_{t-1}+\varepsilon_{t-1}$ is an $\operatorname{AR}(1)$ process. As is well known, the variance of the $\operatorname{AR}(1)$ process is

$$
E x_{t}^{2}=\frac{\sigma^{2}}{1-\theta_{1}^{2}}
$$

so the asymptotic variance of $\widehat{\theta}_{1}$ is

$$
\operatorname{AV}\left(\widehat{\theta}_{1}\right)=\sigma^{2}\left(E x_{t}^{2}\right)^{-1}=1-\theta_{1}^{2}
$$

(ii) MA(2) model with $\theta_{2}=0$

Consider $y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}$. We estimate both θ_{1} and θ_{2}, although θ_{2} is actually 0 .

$$
x_{t}:=-\frac{\partial \varepsilon_{t}(\theta)}{\partial \theta}=\left(\varepsilon_{t-1}, \varepsilon_{t-2}\right)-\theta_{1} x_{t-1}-\theta_{2} x_{t-2}
$$

is an $\operatorname{AR}(2)$ process with $\theta_{2}=0$. This implies that x_{t} is actually an $\operatorname{AR}(1)$ process. ${ }^{2}$

$$
x_{t}=-\theta_{1} x_{t-1}+\left(\varepsilon_{t-1}, \varepsilon_{t-2}\right)
$$

So

$$
E x_{t}^{\prime} x_{t}=\theta_{1}^{2} E x_{t-1}^{\prime} x_{t-1}+E\left[\begin{array}{cc}
\varepsilon_{t-1}^{2} & \varepsilon_{t-1} \varepsilon_{t-2} \\
\varepsilon_{t-2} \varepsilon_{t-1} & \varepsilon_{t-2}^{2}
\end{array}\right]-\theta_{1} E\left[x_{t-1}^{\prime}\left(\varepsilon_{t-1}, \varepsilon_{t-2}\right)\right]-\theta_{1} E\left[\binom{\varepsilon_{t-1}}{\varepsilon_{t-2}} x_{t-1}\right]
$$

[^1]Also since $x_{t}^{\prime} x_{t-1}=\left[\left(\varepsilon_{t-1}, \varepsilon_{t-2}\right)^{\prime}-\theta_{1} x_{t-1}^{\prime}-\theta_{2} x_{t-2}^{\prime}\right] x_{t-1}$,

$$
E x_{t}^{\prime} x_{t-1}=E\left(\varepsilon_{t-1}, \varepsilon_{t-2}\right)^{\prime} x_{t-1}-\theta_{1} E x_{t-1}^{\prime} x_{t-1}-\theta_{2} E x_{t-2}^{\prime} x_{t-1}
$$

Arranging the above two equations and making use of stationarity of x_{t}, we have

$$
\begin{aligned}
\left(1-\theta_{1}^{2}-\theta_{2}^{2}\right) E x_{t}^{\prime} x_{t} & =\theta_{1} \theta_{2} E x_{t}^{\prime} x_{t-1}+\theta_{1} \theta_{2} E x_{t-1}^{\prime} x_{t}+\left(\begin{array}{cc}
\sigma^{2} & -\theta_{1} \sigma^{2} \\
-\theta_{1} \sigma^{2} & \sigma^{2}
\end{array}\right) \\
E x_{t}^{\prime} x_{t-1} & =-\theta_{1} E x_{t}^{\prime} x_{t}-\theta_{2} E x_{t-1}^{\prime} x_{t}+\left(\begin{array}{cc}
0 & 0 \\
\sigma^{2} & 0
\end{array}\right) \\
E x_{t-1}^{\prime} x_{t} & =-\theta_{1} E x_{t}^{\prime} x_{t}-\theta_{2} E x_{t}^{\prime} x_{t-1}+\left(\begin{array}{cc}
0 & \sigma^{2} \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Solving the system of equations simultaneously,

$$
E x_{t}^{\prime} x_{t}=\frac{\sigma^{2}}{\left(1-\theta_{2}\right)\left[\left(1+\theta_{2}\right)^{2}-\theta_{1}^{2}\right]}\left(\begin{array}{cc}
1+\theta_{2} & -\theta_{1} \\
-\theta_{1} & 1+\theta_{2}
\end{array}\right)
$$

Now use $\theta_{2}=0$, then this simplifies to $E x_{t}^{\prime} x_{t}=\frac{\sigma^{2}}{1-\theta_{1}^{2}}\left(\begin{array}{cc}1 & -\theta_{1} \\ -\theta_{1} & 1\end{array}\right)$, which is the same as we get using the other method.

By stationarity of $x_{t}, E x_{t}^{\prime} x_{t}=E x_{t-1}^{\prime} x_{t-1}$. Note also that

$$
E\left[\begin{array}{cc}
\varepsilon_{t-1}^{2} & \varepsilon_{t-1} \varepsilon_{t-2} \\
\varepsilon_{t-2} \varepsilon_{t-1} & \varepsilon_{t-2}^{2}
\end{array}\right]=\left(\begin{array}{cc}
\sigma^{2} & 0 \\
0 & \sigma^{2}
\end{array}\right)
$$

and that

$$
\begin{aligned}
E\left[\binom{\varepsilon_{t-1}}{\varepsilon_{t-2}} x_{t-1}\right] & =E\left[(\begin{array} { c }
{ \varepsilon _ { t - 1 } } \\
{ \varepsilon _ { t - 2 } }
\end{array}) \left(\begin{array}{ll}
\varepsilon_{t-2} & \left.\left.\varepsilon_{t-3}\right)\right]-\theta_{1} \underbrace{E}_{=0}\left[\binom{\varepsilon_{t-1}}{\varepsilon_{t-2}} x_{t-2}\right]\left(\varepsilon_{t-1}, \varepsilon_{t-2}\right) \\
& =E\left[\begin{array}{cc}
\varepsilon_{t-1} \varepsilon_{t-2} & \varepsilon_{t-1} \varepsilon_{t-3} \\
\varepsilon_{t-2}^{2} & \varepsilon_{t-2} \varepsilon_{t-3}
\end{array}\right] \\
& =\left(\begin{array}{cc}
0 & 0 \\
\sigma^{2} & 0
\end{array}\right)
\end{array}\right.\right. \text {. }
\end{aligned}
$$

Therefore

$$
\left(1-\theta_{1}^{2}\right) E x_{t}^{\prime} x_{t}=\left(\begin{array}{cc}
\sigma^{2} & -\theta_{1} \sigma^{2} \\
-\theta_{1} \sigma^{2} & \sigma^{2}
\end{array}\right)
$$

or equivalently,

$$
E x_{t}^{\prime} x_{t}=\frac{\sigma^{2}}{1-\theta_{1}^{2}}\left(\begin{array}{cc}
1 & -\theta_{1} \\
-\theta_{1} & 1
\end{array}\right)
$$

So the asymptotic variance of $\widehat{\theta}_{M L E}$ is

$$
\operatorname{AV}\left(\widehat{\theta}_{M L E}\right)=\sigma^{2}\left(E x_{t}^{\prime} x_{t}\right)^{-1}=\left(\begin{array}{cc}
1 & \theta_{1} \\
\theta_{1} & 1
\end{array}\right)
$$

The asymptotic variance of $\widehat{\theta}_{1}$ is 1 .

Asymptotic Relative Efficiency

From the above result, the asymptotic relative efficiency of $\widehat{\theta}_{1}$ obtained from MA(2) model with $\theta_{2}=0$ to that obtained from MA(1) model is

$$
\mathrm{ARE}=\frac{1-\theta_{1}^{2}}{1}=1-\theta_{1}^{2}
$$

This is less than 1. Estimating irrelevant parameter θ_{2} increases the variance of $\hat{\theta}_{1}$, and thus is relatively inefficient.

[^0]: ${ }^{1}$ The condition is invertibility of the $\mathrm{MA}(q)$ process of y_{t}, which is equivalent to causality of the $\operatorname{AR}(q)$ process of x_{t}. If x_{t} is noncausal stationary, we may use a noncausal expression to claim $E\left[x_{t}^{\prime} x_{s} \varepsilon_{t} \varepsilon_{s}\right]=0$ for $t \neq s$.

[^1]: ${ }^{2}$ We may obtain $E x_{t}^{\prime} x_{t}$ from an $\operatorname{AR}(2)$ process, and use $\theta_{2}=0$ later. Since $x_{t}^{\prime} x_{t}=\left[\left(\varepsilon_{t-1}, \varepsilon_{t-2}\right)^{\prime}-\theta_{1} x_{t-1}^{\prime}-\theta_{2} x_{t-2}^{\prime}\right]$. $\left[\left(\varepsilon_{t-1}, \varepsilon_{t-2}\right)-\theta_{1} x_{t-1}-\theta_{2} x_{t-2}\right]$,

 $$
 E x_{t}^{\prime} x_{t}=\theta_{1}^{2} E x_{t-1}^{\prime} x_{t-1}+\theta_{2}^{2} E x_{t-2}^{\prime} x_{t-2}+\theta_{1} \theta_{2} E x_{t-1}^{\prime} x_{t-2}+\theta_{1} \theta_{2} E x_{t-2}^{\prime} x_{t-1}-\cdots
 $$

