
Problem Set 7 Solution

May 31st, 2009 by Yang

1. Monte Carlo Simulation of Bootstrap Methods

We estimate θ0 = exp(µ) by θ̂n = exp(X) where µ is the population average and X is the sample
average. To construct CI for θ̂n, we can use the following method.

1. The delta method: Since
√

n(X − µ) d−→ N(0, σ2),
√

n(θ̂n − θ0) =
√

n
(
exp(X)− exp(µ)

) d−→ N
(
0, σ2 exp(µ)2

)

Its asymptotic variance can be consistently estimated by σ2θ̂2
n, where σ is not estimated since it

is assumed to be known. So the t-statistic is

Tn =
√

n(θ̂n − θ0)

σθ̂n

The two-sided symmetric CI for θ0 is obtained as follows.

CI0.95 =

[
θ̂n − 1.96σθ̂n√

n
, θ̂n +

1.96σθ̂n√
n

]

The one-sided CI for θ0 is

CI0.95 =

(
0, θ̂n +

1.65σθ̂n√
n

]

2. The nonparamteric iid bootstrap based on B bootstrap resamples: For each b = 1, · · · , B, draw
n times randomly from (Xi)n

i=1. Calculate θ̂∗nb = exp(X∗
nb), then the bootstrap t-statistic is

T ∗nb =
√

n(θ̂∗nb − θ̂n)

σθ̂∗nb

As we have B such bootstrap t-statistics, we calculate the empirical quantiles of the numbers to
construct CI. For the two-sided symmetric CI for θ0, we calculate k̂ such that

1
B

B∑

b=1

1
(
|T ∗nb| ≤ k̂

)
≈ 0.95

and use this to obtain

CI0.95 =

[
θ̂n − k̂σθ̂n√

n
, θ̂n +

k̂σθ̂n√
n

]

Following the lecture note, we may order |T ∗nb| from smallest to largest, denote them by |T ∗n |(b),
and choose k̂ = |T ∗n |(x0.95(B+1)y). The one-sided CI is

CI0.95 =

(
0, θ̂n − k̂σθ̂n√

n

]
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where k̂ is now defined so as to satisfy

1
B

B∑

b=1

1
(
T ∗nb ≥ k̂

)
≈ 0.95

It seems strange at a first glance, but note that k̂
p−→ k where k satisfies

Pr(Tn ≥ k) = 0.95 ⇔ Pr

(√
n(θ̂n − θ0)

σθ̂n

≥ k

)
= 0.95

⇔ Pr

(
θ̂n − θ0 ≥ kσθ̂n√

n

)
= 0.95

⇔ Pr

(
θ0 ≤ θ̂n − kσθ̂n√

n

)
= 0.95

The last expression is consistent with the one-sided CI provided above. Such k̂ can be obtained as
follows. Order T ∗nb from smallest to largest, denote them by T ∗n(b), and choose k̂ = T ∗n(p0.05(B+1)q).

The results are as follows.

|| Empirical Cov. Prob. | Av. Lengths of CI

||-----------------------|---------------------

|| 2-sided 1-sided | 2-sided 1-sided

----------------------||-----------------------|---------------------

Delta Method || 0.8890 0.8750 | 4.1238 3.0885

Bootstrap w/ B= 250 || 0.9220 0.9230 | 6.4252 4.5707

Bootstrap w/ B=1000 || 0.9280 0.9290 | 6.4260 4.5711

----------------------||-----------------------|---------------------

Delta Method (t) || 0.9110 0.8840 | 4.6880 3.2648

Basically using the delta method leads us to overreject the null. The average lengths of the confidence
intervals are smaller when using the delta method than when using the bootstrap methods, which is
why the delta method generates smaller empirical coverage probabilities. Using the critical values from
tn distribution increases the coverage probabilities by a little, but it is still less than those obtained
by the bootstrap methods.

2. True or False

(i) QUESTIONABLE.
It is clear that the power of the test gets worse if we use T ∗n = θ̂∗/s(θ̂∗) instead of (θ̂∗ − θ̂)/s(θ̂∗). But
the null rejection converage probability may also suffer from centering on θ0 = 0 instead of θ̂. To see
this, note

T ∗n =
θ̂∗

s(θ̂∗)
=

θ̂∗ − θ̂

s(θ̂∗)
+

θ̂

s(θ̂∗)
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The first summand converges in distribution to N(0, 1), but we have little information on the second
summand, even when θ0 = 0 is true. Apparently, it is not 0 in probability, so there is a possibility
that T ∗n = θ̂∗/s(θ̂∗) does not converge in distribution to N(0, 1). In those cases, the null rejection
probability using such T ∗n does not converge to α.

(ii) FALSE.
The population moments will be

ETn = E

[
1
n

n∑

i=1

yi

]
= Eyi = µ

var(Tn) = var

(
1
n

n∑

i=1

yi

)
=

1
n

var(yi) =
σ2

n

On the other hand, the bootstrap samples {y∗1, · · · , y∗n} are randomly drawn from the sample {y1, · · · , yn}.
So the random variable y∗i follows the multinomial distribution, which means y∗i takes on y1, · · · , yn

with a probability 1
n each. Therefore, E∗y∗i = 1

n

∑n
i=1 yi.

E∗T ∗n = E∗
[

1
n

n∑

i=1

y∗i

]
= E∗y∗i =

1
n

n∑

i=1

yi = Tn

var∗(Tn) = var∗
(

1
n

n∑

i=1

y∗i

)
=

1
n

var∗(y∗i ) =
1
n2

n∑

i=1

(yi − Tn)2

In general, ETn 6= E∗T ∗n and var(Tn) 6= var∗(T ∗n). But note that E∗T ∗n
p−→ µ and var∗(

√
nT ∗n)

p−→ σ2

as n →∞.

(iii) TRUE.
The optimal linear forecast P̂ (yt+1|xt) is only linear in yt+1 when the bases xt include a constant term.

(iv) TRUE.
As discussed in the lecture, the HAC covariance matrix estimator may not be positive definite when
the truncated kernel is used. While this does not necessarily mean that the estimator becomes negative
definite, it is sometimes the case that it becomes a negative definite matrix. For example, suppose
that vt := xtut is an AR(1) process with mean 0 and the first order parameter |ρ| < 1. Now suppose
we chose ST = 1 probably because T is small. If we use a truncated kernel, the HAC estimator has
the following form.

Ω̂ =
1
T

T∑

t=1

v2
t +

1
T

T∑

t=2

vtvt−1 +
1
T

T∑

t=2

vt−1vt

Since vt is an AR(1) process,

EΩ̂ = Ev2
t +

2(T − 1)
T

Evtvt−1 =
(

1 +
2(T − 1)ρ

T

)
Ev2

t

Let ρ = − 2T
3(T−1) , then EΩ̂ = −1

3Ev2
t which is negative. So Ω̂ would be negative in many cases.
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(v) FALSE.
ST needs to grow to infinity for consistency of the HAC covariance matrix estimator, but not because
it guarantees the variance of the estimator to converge to 0. It guarantess the bias of the estimator to
converge to 0 as T →∞. This is a necessary condition of consistency. On the other hand, ST /T → 0
should be satsified since it makes the variance of the estimator converge to 0, which is also a necessary
condition of consistency.

3. Optimal Forecast

(i) We would like to use the lemma that if Yt+1 and Xt are jointly Guassian processes satisfying
(

Yt+1

Xt

)
∼ N

([
µ1

µ2

]
,

[
Ω11 Ω12

Ω21 Ω22

])

then,
Yt+1|Xt ∼ N

(
µ1 + Ω12Ω−1

22 (Xt − µ2), Ω11 − Ω12Ω−1
22 Ω21

)

Let us prove the lemma later and proceed to prove the statement first. By the lemma,

E[Yt+1|Xt] = µ1 + Ω12Ω−1
22 (Xt − µ2)

= (µ1 − Ω12Ω−1
22 µ2) + Ω12Ω−1

22 Xt

=
(

µ1 − Ω12Ω−1
22 µ2 Ω12Ω−1

22

) (
1
Xt

)

which means that E[Yt+1|Xt] is a linear function of 1 and Xt. Since E[Yt+1|Xt] minimizes the mean
squared error among all forecasts, its mean sqaured error is no greater than that of all linear forecasts.
Therefore it is the optimal linear forecast.

Now prove the lemma as follows. Define Zt := Yt+1 − Ω12Ω−1
22 Xt, then

(
Zt

Xt

)
=

(
I −Ω12Ω−1

22

0 I

)(
Yt+1

Xt

)
∼ N

([
µ1 − Ω12Ω−1

22 µ2

µ2

]
,

[
Ω11 − Ω12Ω−1

22 Ω21 0
0 Ω22

])

Since Zt and Xt are jointly normal and their covariance is 0, they are independent of each other.
Therefore, the conditional distribution of Zt on Xt is the same as the marginal distribution of Xt.

Zt|Xt ∼ N(µ1 − Ω12Ω−1
22 µ2, Ω11 − Ω12Ω−1

22 Ω21)

Rewrite this as
[
Yt+1 − Ω12Ω−1

22 Xt

] |Xt ∼ N(µ1 − Ω12Ω−1
22 µ2, Ω11 − Ω12Ω−1

22 Ω21)

or
Yt+1|Xt − Ω12Ω−1

22 Xt ∼ N(µ1 − Ω12Ω−1
22 µ2, Ω11 − Ω12Ω−1

22 Ω21)

Therefore we have

Yt+1|Xt ∼ N
(
µ1 + Ω12Ω−1

22 (Xt − µ2), Ω11 − Ω12Ω−1
22 Ω21

)
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(ii) Let α1Y1 + · · ·+ αnYn be the optimal linear forecast of Yn+h. The it satisfies

E[(Yn+h − α1Y1 − · · · − αnYn)
(

Y1 · · · Yn

)
] = 0

We want to show the optimal linear forecast of Xn+h based on 1, X1, · · · , Xn is µ+α1Y1 + · · ·+αnYn.
First, we need to show that it is a linear function of 1, X1, · · · , Xn. Note

µ + α1Y1 + · · ·+ αnYn = µ + α1(X1 − µ) + · · ·+ αn(Xn − µ)

= µ(1− α1 − · · · − αn) + α1X1 + · · ·+ αnXn

which proves the claim. Now it satisfies the condition of the optimal linear forecast.

E[(Xn+h − µ− α1Y1 − · · · − αnYn)
(

1 X1 · · · Xn

)
]

=E[(Yn+h − α1Y1 − · · · − αnYn)
(

1 Y1 + µ · · · Yn + µ
)
]

=E[(Yn+h − α1Y1 − · · · − αnYn)
(

0 Y1 · · · Yn

)
]

+ E[(Yn+h − α1Y1 − · · · − αnYn)
(

1 µ · · · µ
)
]

=0

where the first summand is 0 by the optimality of α1Y1 + · · ·+ αnYn among linear forecasts of Yn+h,
and the second summand is 0 by the construction of Yi so that EYi = 0.

4. HAC estimation

The finite sample rejection probabilities of H0 : δ = 0 are as follows.

Parameters chosen | T=100 | T=5000

rho1 rho2 | HAC estimator White estimator | HAC estimator White estimator

-------------------|-----------------------------------|-----------------------------------

-0.50 0.00 | 0.0625 0.0205 | 0.0460 0.0125

0.00 0.00 | 0.0755 0.0495 | 0.0500 0.0470

0.50 0.00 | 0.0800 0.1035 | 0.0480 0.0845

0.90 0.00 | 0.1000 0.1560 | 0.0480 0.1465

0.99 0.00 | 0.0935 0.1555 | 0.0550 0.1605

1.50 -0.75 | 0.0820 0.1375 | 0.0470 0.1220

1.90 -0.95 | 0.0980 0.1705 | 0.0520 0.1520

0.80 0.10 | 0.1005 0.1520 | 0.0500 0.1450

We can observe that the White covariance matrix estimator is not robust to autocorrelation. When ρ1

or ρ2 is not 0, ut is autocorrelated, resulting in distortion of the null rejection probability of the test
using the White estimator. On the other hand, the HAC estimator is robust to autocorrelated errors.
When T = 100, ST is small and thus causes a bias, which is why we sometimes observe rejection
probabilities far from 0.05. This phenomena disappears when T = 5000, proving consistency of the
HAC estimator as well as robustness of the test using the HAC estimator.
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