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1. Big Picture

We want to find the conditions that guarantee the consistency of extremum estimators.

Consistency
:

Assumption EE

6

Assumption UWCON

y

Assumption ID

6

Θ: bounded
Assumption

PWCON
Assumption SE

6

Θ: compact
Q: continuous
θ0: uniquely

minimizes Q

6 6

(i) Data (Wi) are iid.
(ii) m(w, θ) is continuous in θ.
(iii) m(w, θ) is integrable in w.
(iv) E supθ∈Θ ||m(Wi, θ)|| < ∞
(v) Θ is compact.
(vi) θ0 uniquely minimizes Q.
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θ̂n ∈ Θ
Qn(θ̂n) ≤ infθ∈Θ Qn(θ)

+op(1)

2. MLE example

What is Maximum Likelihood Estimation? We want to maximize the joint likelihood of the data by
chooing apporpriate parameters.

Joint Likelihood = Joint Probability Density (Mass)

Assuming iid data,

max
θ

L(W ; θ) =
n∏

i=1

f(Wi; θ)

or equivalently,

max
θ

l(W ; θ) =
1
n

n∑

i=1

log f(Wi; θ)
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To be consistent with the other estimation methods, we alternatively,

min
θ
−l(W ; θ) = − 1

n

n∑

i=1

log f(Wi; θ)

Here we set Qn(θ) := −l(W ; θ) and m(Wi, θ) := − log f(Wi; θ), then

Qn(θ) =
1
n

n∑

i=1

m(Wi, θ)

and by weak LLN, it converges to
Q(θ) = Em(Wi, θ)

in probability. (PWCON under the assumption that Wi are iid, and E|| log f(Wi; θ)|| < ∞)

Let us investigate other primitive assumptions.

• Is m(w, θ) continuous in θ? Yes, as long as f is continuous in θ.

• Is m(w, θ) integrable in w? Yes, as long as f is integrable in w.

• Is Θ compact? Yes, we can always find such a Θ.

• Does θ0 uniquely minimizes Q? Yes, we proved it, under some assumption.

For example, let

f(Wi; θ) =
1√

2dπd|Σ| exp
(
−1

2
(Wi − µ)′Σ−1(Wi − µ)

)

then
m(Wi, θ) =

d

2
log(2π) +

1
2

log |Σ|+ 1
2
(Wi − µ)′Σ−1(Wi − µ)

Check the above assumptions.

3. 2SLS Estimation example

Sometimes we may not have EXiUi = 0, but EZiUi = 0, where Yi = X ′
iθ + Ui. So we want to find θ

that satisfies
EZi(Yi −X ′

iθ) = 0

or by using the sample analogue,
1
n

n∑

i=1

Zi(Yi −X ′
iθ) = 0

When dim(Zi) = dim(θ), this is easy to solve, since there are as many variables as equations. If
dim(Zi) > dim(θ), we want to minimize the difference in some way. One way to do this is minimzing
sum of the squares of the difference with some weights.
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For instance, if we use the weight (Z ′Z/n)−1/2,

min
θ

1
2

wwwwww

(
1
n

n∑

i=1

ZiZ
′
i

)− 1
2 1

n

n∑

i=1

Zi(Yi −X ′
iθ)

wwwwww

2

which is the same as

min
θ

1
2

(
1
n

n∑

i=1

(Yi −X ′
iθ)Z

′
i

)(
1
n

n∑

i=1

ZiZ
′
i

)−1 (
1
n

n∑

i=1

Zi(Yi −X ′
iθ)

)

Using matrix notation and multiplying by 2n,

min
θ

(Y −Xθ)′Z(Z ′Z)−1Z ′(Y −Xθ)

The FOC is
−2X ′Z(Z ′Z)−1Z ′(Y −Xθ) = 0

and thus the solution is
θ̂ = (X ′PZX)−1X ′PZY

which is called 2 Stage Least Squares estimator.

This is a special case of Generalized Method of Moments estimation. Let An = (Z ′Z/n)−1/2, and
g(Wi, θ) = Zi(Yi −X ′

iθ), then

Qn(θ) :=
1
2

wwwwwAn
1
n

n∑

i=1

g(Wi, θ)

wwwww
2

Indeed, let m(Wi, θ) := g(Wi, θ), then

Qn(θ) =
1
2

wwwwwAn
1
n

n∑

i=1

m(Wi, θ)

wwwww
2

and by weak LLN, it converges to

Q(θ) =
1
2
‖AEm(Wi, θ)‖2

where An
p−→ A. Using the explicit form of functions,

Q(θ) =
1
2

www(EZiZ
′
i)
−1/2EZi(Yi −X ′

iθ)
www

2

So PWCON requires iid Yi, Xi, and Zi, E||ZiZ
′
i|| < ∞ and E||Zi(Yi −X ′

iθ)|| < ∞.

Does θ0 uniquely minimize Q? The answer would be yes, if we assume EXiZ
′
i(EZiZ

′
i)
−1EZiX

′
i

is invertible. We will come back to this issue later in the lecture. Check also the other primitive
assumptions.
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4. Appendix

(1) The norm operator ‖·‖
With a k × 1 vector x, ||x|| =

√
x2

1 + · · ·+ x2
k. E||m(Wi, θ)|| < ∞ is true if the second moment

is finite.

(2) Weak convergence
Weak convergence refers to convergence in probability, in comparison to almost sure convergence
which is often called as strong convergence. Weak law of large numbers is a version of LLN that
gives a result of weak convergence. Weak LLN holds if the data are iid, and the second moment
of the summand is finite.

(3) Op and op

In math, we use the notation O(big Oh) and o(little oh). O(x2) means a function at most of
order x2. e.g. 5x2 + 7x− 3 is O(x2). More formally, O(x2) is a function that is finite when we
divide it by x2 and let x → ∞. o(x2) means a function of order less than x2. More formally,
o(x2) is a function that converges to 0 when we divide it by x2 and let x →∞.
In probability space, we can use similar notations to denote a sequence of random variables.
Op(big Oh pi) is a sequence that is bounded in probability, and op(little oh pi) is one that
converges to 0 in probability. e.g. Xn = Op(n3), then Xn diverges as the same rate as n3. e.g.
Xn = op(1), then Xn converges to 0 in probability as n →∞.

Op(1) + Op(1) = Op(1)

Op(1) + op(1) = Op(1)

op(1) + op(1) = op(1)

Op(1)Op(1) = Op(1)

Op(1)op(1) = op(1)

op(1)op(1) = op(1)

There are more, e.g. Op(n2) + op(n) = Op(n2), op(n2) + Op(n) = op(n2), Op(n2)op(n) = op(n3),
and so on.

(4) sup and inf
These are almost the same as max and min, except that they always exist while max and min
may not. Let A ⊂ R be some set. supA is the smallest number no less than any element in A.
inf A is the biggest number no greater than any element in A.
lim supn→∞An is defined as limn→∞ supk≥n Ak. This always exists. lim inf is defined similary.
limAn exists only when lim supAn = lim inf An, in which case

lim
n→∞An = lim sup

n→∞
An = lim inf

n→∞ An
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