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1. Big Picture

We look for the conditions that guarantee the asymptotic normality of extremum estimators. For
example, consider a class of m-estimators that minimize some kind of sample mean

Qn(θ) =
1
n

n∑

i=1

m(Wi, θ)

Then,

Asymptotic Normality
1

Assumption CF

i

Assumption EE2

6

(i) θ0 : int(Θ)
(ii) Qn(θ) ∈ C2(Θ0)

(iii)
√

n ∂
∂θQn(θ0)

d−→ N(0,Ω0)
(iv) supθ∈Θ0

‖ ∂2

∂θ∂θ′Qn(θ)−B(θ)‖ p−→ 0
where B(θ) is continous at θ0

and B(θ0) is nonsingular.

6(?)

(1) θ0 : int(Θ)
(2) m(w, θ) ∈ C2(Θ0)
(3) m(w, θ) is integrable in w.
(4) Data (Wi) are iid.
(5) E supθ∈Θ0

‖ ∂
∂θm(Wi, θ)‖ < ∞

(6) E‖ ∂
∂θm(Wi, θ0)‖2 < ∞

(7) E supθ∈Θ0
‖ ∂2

∂θ∂θ′m(Wi, θ)‖ < ∞
(8) E ∂2

∂θ∂θ′m(Wi, θ0) is nonsingular.

6

(i) θ̂n
p−→ θ0

(ii) ∂
∂θQn(θ̂n) = op(n−1/2)

You may skip (?) if you are not interested in detailed primitive assumptions of m-estimators case.
(1)-(8) are the primitive assumptions that guarantee Assumption CF. More specifically, (2) implies
(ii). (2)-(5) together imply E ∂

∂θQn(θ0) = 0. This along with (4) and (6) implies (iii) by CLT. Note
that choice of Θ0 guarantees compactness of Θ0. (2)-(4) and (7)-(8) along with compactness of Θ0

imply that (iv) holds. ML estimators and NLS estimators fall in the class of m-estimators, but GMM
estimators do not.
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2. Binary choice example

Consider the following model.

Yi =
{

1 if X ′
iθ0 − εi > 0

0 otherwise

where
Pr(εi < t) =

et

1 + et

and the data Wi = (Yi, Xi) are iid, i = 1, · · · , n. This is so-called Logit model. We can estimate θ

using MLE or NLS.

2.1 MLE

We make use of the fact that the joint probability of Yi is given by

f(Yi, Xi; θ) =

(
eX′

iθ

1 + eX′
iθ

)Yi (
1

1 + eX′
iθ

)1−Yi

This follows from

Pr(Yi = 1|Xi) = Pr(εi < X ′
iθ|Xi) =

eX′
iθ

1 + eX′
iθ

and the fact that Yi follows a Bernoulli distribution with succes probability Pr(Yi = 1|Xi). So MLE
would solve

max
θ

l(Wi; θ) =
1
n

n∑

i=1

log f(Yi, Xi; θ)

or equivalently,

min
θ

Qn(θ) := − 1
n

n∑

i=1

log f(Yi, Xi; θ) = − 1
n

n∑

i=1

[
YiX

′
iθ − log(1 + eX′

iθ)
]

where
m(Wi, θ) := − log f(Yi, Xi; θ) = −YiX

′
iθ + log(1 + eX′

iθ)

Now let us investigate whether the assumptions (1)-(8) are satisfied. (1) has to be assumed. (2) is
satisfied, and thus (ii) is satisfied. (3) is true. (4) is assumed in the model. (5) requires E||Xi|| < ∞.
(6) and (7) are satisfied if E||Xi||2 < ∞. (8) is guaranteed if EXiX

′
i is nonsingular. To summarize,

under the generous assumptions that θ0 ∈ int(Θ), that E||Xi||2 < ∞ and that EXiX
′
i is nonsingular,

Assumption CF is satisfied.

Remark. For the ML estimator of this model to be asymptotically normal, Assumption EE, Assumption
EE2 (ii), iid data, compact Θ, θ0 ∈ int(Θ), E||Xi||2 < ∞, and invertible EXiX

′
i are enough. To see

this, note first that compact Θ and E||Xi|| < ∞ guarantee θ̂n
p−→ θ0, and thus Assumption EE2 and

Assumption CF are all satisfied, which imply that ML estimator θ̂n would be asymptotically normal.
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2.2 NLS

Here we make use of the fact that Yi is a Bernoulli random variable, so

E[Yi|Xi] = Pr(Yi = 1|Xi) =
eX′

iθ0

1 + eX′
iθ0

As we know that conditional expectation minimizes the mean square error, it is natural to think of
the following estimation method

min
θ

1
n

n∑

i=1

(
Yi − eX′

iθ

1 + eX′
iθ

)2

Define

m(Wi, θ) =
1
2

(
Yi − eX′

iθ

1 + eX′
iθ

)2

then the stochastic criterion function would be Qn(θ) = 1
n

∑n
i=1 m(Wi, θ). Now let us find the condi-

tions that support the assumptions (1)-(8). (1) should be assumed. (2) and (3) are satisfied. (4) is
assumed in the model. (5) is satisfied if E||Xi|| < ∞. (6) and (7) require E||Xi||2 < ∞. (8) would be
true if EXiX

′
i is invertible. So Assumption CF is guaranteed by the same assumptions that we made

in the MLE case.

2.3 Covariance Matrix

We have √
n(θ̂n − θ0)

d−→ N
(
0, B−1

0 Ω0B
−1
0

)

In MLE case,

Ω0 = E
∂

∂θ
m(Wi, θ0)

∂

∂θ′
m(Wi, θ0)

= E

[(
−YiXi +

eX′
iθ0Xi

1 + eX′
iθ0

)(
−YiX

′
i +

eX′
iθ0X ′

i

1 + eX′
iθ0

)]

= E




(
Yi − eX′

iθ0

1 + eX′
iθ0

)2

XiX
′
i




= E


E




(
Yi − eX′

iθ0

1 + eX′
iθ0

)2
∣∣∣∣∣∣
Xi


XiX

′
i




= E
[
V ar(Yi|Xi)XiX

′
i

]

= E

[
eX′

iθ0XiX
′
i

(1 + eX′
iθ0)2

]

B0 = E
∂2

∂θ∂θ′
m(Wi, θ0) = E

[
eX′

iθ0XiX
′
i

(1 + eX′
iθ0)2

]
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We can verify that B0 = Ω0, so

√
n(θ̂ML

n − θ0)
d−→ N


0, E

[
eX′

iθ0XiX
′
i

(1 + eX′
iθ0)2

]−1



The estimation of covariance matrix can be done by replacing expectation with sample mean, and θ0

with θ̂n.

nV̂ ar(θ̂n) =

(
1
n

n∑

i=1

eX′
i θ̂nXiX

′
i

(1 + eX′
i θ̂n)2

)−1

In NLS case,

Ω0 = E
∂

∂θ
m(Wi, θ0)

∂

∂θ′
m(Wi, θ0)

= E

[(
−

[
Yi − eX′

iθ0

1 + eX′
iθ0

]
eX′

iθ0Xi

(1 + eX′
iθ0)2

)(
−

[
Yi − eX′

iθ0

1 + eX′
iθ0

]
eX′

iθ0X ′
i

(1 + eX′
iθ0)2

)]

= E




(
Yi − eX′

iθ0

1 + eX′
iθ0

)2
e2X′

iθ0XiX
′
i

(1 + eX′
iθ0)4




= E

[
V ar(Yi|Xi)

e2X′
iθ0XiX

′
i

(1 + eX′
iθ0)4

]

= E

[
e3X′

iθ0XiX
′
i

(1 + eX′
iθ0)6

]

B0 = E
∂2

∂θ∂θ′
m(Wi, θ0)

= E

[
e2X′

iθ0XiX
′
i

(1 + eX′
iθ0)4

−
(

Yi − eX′
iθ0

1 + eX′
iθ0

)
eX′

iθ0(1− eX′
iθ0)XiX

′
i

(1 + eX′
iθ0)3

]

= E

[
e2X′

iθ0XiX
′
i

(1 + eX′
iθ0)4

− E

[
Yi − eX′

iθ0

1 + eX′
iθ0

∣∣∣∣∣Xi

]
eX′

iθ0(1− eX′
iθ0)XiX

′
i

(1 + eX′
iθ0)3

]

= E

[
e2X′

iθ0XiX
′
i

(1 + eX′
iθ0)4

]

Now we can see Ω0 6= B0. We have

√
n(θ̂NLS

n − θ0)
d−→ N


0, E

[
e2X′

iθ0XiX
′
i

(1 + eX′
iθ0)4

]−1

E

[
e3X′

iθ0XiX
′
i

(1 + eX′
iθ0)6

]
E

[
e2X′

iθ0XiX
′
i

(1 + eX′
iθ0)4

]−1



Note that the covariance matrix cannot be simplified further as long as Xi is stochastic. The covariance
matrix would be estimated by

nV̂ ar(θ̂n) =

(
1
n

n∑

i=1

e2X′
i θ̂nXiX

′
i

(1 + eX′
i θ̂n)4

)−1 (
1
n

n∑

i=1

e3X′
i θ̂nXiX

′
i

(1 + eX′
i θ̂n)6

)(
1
n

n∑

i=1

e2X′
i θ̂nXiX

′
i

(1 + eX′
i θ̂n)4

)−1
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3. Linear IV example

Consider linear IV model as follows

yi = x′iβ0 + εi

xi = z′iπ0 + ui

where

Exiεi 6= 0

Eziεi = 0

and the data are iid. As we have seen in the last section, using A′nAn =
(

1
nziz

′
i

)−1 yields 2SLS
estimator as

β̂n = (X ′PZX)−1X ′PZY

(a) Let us begin with standard method of asymptotics.

√
n(β̂n − β0) = (X ′PZX)−1√nX ′PZ(Y −Xβ0)

Rewriting the RHS as



(
1
n

n∑

i=1

xiz
′
i

)(
1
n

n∑

i=1

ziz
′
i

)−1 (
1
n

n∑

i=1

zix
′
i

)

−1 (

1
n

n∑

i=1

xiz
′
i

)(
1
n

n∑

i=1

ziz
′
i

)−1 (
1√
n

n∑

i=1

ziεi

)

would let us conclude that it converges in distribution to

[
Exiz

′
i(Eziz

′
i)
−1Ezix

′
i

]−1
Exiz

′
i(Eziz

′
i)
−1

(
1√
n

n∑

i=1

ziεi

)

under the assumption that E||xiz
′
i|| < ∞, E||zi||2 < ∞, and invertible Exiz

′
i(Eziz

′
i)
−1Ezix

′
i. By CLT,

1√
n

n∑

i=1

ziεi
d−→ N

(
0, Eε2

i ziz
′
i

)

and under conditional homoskedasticity assumption that V ar(εi|zi) = σ2, the variance will be σ2Eziz
′
i.

So we can write as √
n(β̂n − β0)

d−→ N
(
0, σ2

[
Exiz

′
i(Eziz

′
i)
−1Ezix

′
i

]−1
)

(b) Now let us take GMM approach. Recall that g(yi, xi, zi, β) = zi(yi− x′iβ). Assumption CF (i) has
to be assumed. CF (ii) is satisfied immediately. CF (iii) is implied by E||xiz

′
i|| < ∞, E||zi||2 < ∞,

and conditional homoskedasticity. CF (iv) is implied by full column rank Ezix
′
i and E||xiz

′
i|| < ∞.

(You may skip how to derive CF iii and iv from those assumptions.)
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The statement that Ezix
′
i has full column rank is equivalent to saying that Exiz

′
i(Eziz

′
i)
−1Ezix

′
i is

invertible. So the set of assumptions required for Assumption CF is the same as that in (a).

Now calculate Ω0 and B0 as follows. Note first that

Γ0 = E
∂

∂β′
g(wi, β0) = Ezix

′
i

A′A = (Eziz
′
i)
−1

V0 = Eg(wi, β0)g(wi, β0)′ = σ2Eziz
′
i

[B(β)]m,j = E
∂

∂βm
g(wi, β)′A′AE

∂

∂βj
g(wi, β) + E

∂2

∂βm∂βj
g(wi, θ)′A′AEg(wi, β)

and thus that

Ω0 = Γ′0A
′AV0A

′AΓ0 = σ2Exiz
′
i(Eziz

′
i)
−1Ezix

′
i

B0 = B(β0) = Γ′0A
′AΓ0 = Exiz

′
i(Eziz

′
i)
−1Ezix

′
i

By the theorem, √
n(β̂n − β0)

d−→ N
(
0, σ2

[
Exiz

′
i(Eziz

′
i)
−1Ezix

′
i

]−1
)

which is the same as the result in (a).

(c) The covariance matrix can be estimated by

σ̂2


 1

n

n∑

i=1

xiz
′
i

(
1
n

n∑

i=1

ziz
′
i

)−1
1
n

n∑

i=1

zix
′
i



−1

where σ̂2 is a consistent estimate of σ2 with

σ̂2 =
1
n

n∑

i=1

(yi − x′iβ̂n)2

Remark. As we proved in the class, choice of A′nAn =
(

1
nziz

′
i

)−1 is optimal under the conditional
homoskedasticity, since V0 = σ2Eziz

′
i, and A′nAn

p−→ σ2V −1
0 .

Remark. If the conditional homoskedasticity does not hold, the optimal choice of An would be different.
It should be such that A′nAn = ( 1

n ε̂2
i ziz

′
i)
−1, where ε̂i is a consistent estimate of εi. Also we need an

additional assumption E||ziεi||2 < ∞ to guarantee asymptotic normality of the estimator.

Appendix. (Central Limit Theorem) Assume iid data and E||si||2 < ∞. Then,

√
n

(
1
n

n∑

i=1

si − Esi

)
=

1√
n

n∑

i=1

(si −Esi)
d−→ N(0, V ar(si))

where V ar(si) = E[(si − Esi)(si − Esi)′].
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