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1. Big Picture

We look for the conditions that guarantee the asymptotic normality of extremum estimators. For

example, consider a class of m-estimators that minimize some kind of sample mean
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E%m(W@, 6o) is nonsingular.

You may skip (%) if you are not interested in detailed primitive assumptions of m-estimators case.
(1)-(8) are the primitive assumptions that guarantee Assumption CF. More specifically, (2) implies
(i1). (2)-(5) together imply E%Qn(ﬁo) = 0. This along with (4) and (6) implies (iii) by CLT. Note
that choice of ©¢ guarantees compactness of Op. (2)-(4) and (7)-(8) along with compactness of ©g
imply that (iv) holds. ML estimators and NLS estimators fall in the class of m-estimators, but GMM

estimators do not.



2. Binary choice example

Consider the following model.

v — 1 ifX{90—62‘>0
10 otherwise
where .
Pr(e; < t) = —
I'(EZ < ) = m

and the data W; = (Y;, X;) are iid, ¢ = 1,--- ,n. This is so-called Logit model. We can estimate 6
using MLE or NLS.

2.1 MLE

We make use of the fact that the joint probability of Y; is given by

oXio \ 7 1 1-Y;
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This follows from

and the fact that Y; follows a Bernoulli distribution with succes probability Pr(Y; = 1|X;). So MLE

would solve

max [(Wi; 0) = Zlogf (Yi, X;;0)

or equivalently,

n

min Qr (0) .:——Zlong,,XZ,Q ”u[YXG log(1 + eXi )]

where

m(W;, 0) := —log f(Y;, X;;0) = —YiXZ(Q +log(1 + exge)

Now let us investigate whether the assumptions (1)-(8) are satisfied. (1) has to be assumed. (2) is
satisfied, and thus (ii) is satisfied. (3) is true. (4) is assumed in the model. (5) requires E||X;|| < oo.
(6) and (7) are satisfied if E||X;||?> < co. (8) is guaranteed if EX;X/ is nonsingular. To summarize,
under the generous assumptions that 6y € int(0), that E||X;||> < co and that EX;X/ is nonsingular,
Assumption CF is satisfied.

Remark. For the ML estimator of this model to be asymptotically normal, Assumption EE, Assumption
EE2 (ii), iid data, compact ©, 6y € int(0), E||X;||> < oo, and invertible EX; X/ are enough. To see
this, note first that compact © and E||X;|| < co guarantee 6, —— 6, and thus Assumption EE2 and
Assumption CF are all satisfied, which imply that ML estimator §n would be asymptotically normal.



2.2 NLS

Here we make use of the fact that Y; is a Bernoulli random variable, so
X160

E[Y1X] = Pr(y; = 11x,) = o

As we know that conditional expectation minimizes the mean square error, it is natural to think of

the following estimation method
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then the stochastic criterion function would be @, (6) = 1 > | m(W;, ). Now let us find the condi-
tions that support the assumptions (1)-(8). (1) should be assumed. (2) and (3) are satisfied. (4) is
assumed in the model. (5) is satisfied if E||X;|| < co. (6) and (7) require E||X;||? < co. (8) would be
true if EX, X/ is invertible. So Assumption CF is guaranteed by the same assumptions that we made

in the MLE case.

2.3 Covariance Matrix

We have
V(B — 00) ~ N (0, By 'Q0B; ")
In MLE case,
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We can verify that By = g, so
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The estimation of covariance matrix can be done by replacing expectation with sample mean, and 6
with 0,,.
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Note that the covariance matrix cannot be simplified further as long as X; is stochastic. The covariance

matrix would be estimated by
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3. Linear IV example

Consider linear IV model as follows
yi = 2B + €
T = zimo + u;
where
E.T}Z'EZ' 7é 0
EZZGZ' =0

and the data are iid. As we have seen in the last section, using A/ A, = (%zizg)fl yields 2SLS
estimator as

B = (X'PzX)"'X'PyY

(a) Let us begin with standard method of asymptotics.
V(B = Bo) = (X'PzX) 7 /nX'Py(Y — X o)

Rewriting the RHS as
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would let us conclude that it converges in distribution to
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under the assumption that E||z;2|| < oo, E||z]|* < oo, and invertible Ex;z/(Ez;zl) "' Ezal. By CLT,
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and under conditional homoskedasticity assumption that Var(g;|z;) = o2, the variance will be 02 E2;2/.

So we can write as

o~

V(B — o) N (0,02 [Exiz;(Ezizg)_lEzix;]A)

(b) Now let us take GMM approach. Recall that g(y;, z;, 2, 3) = zi(y; — «}5). Assumption CF (i) has

to be assumed. CF (ii) is satisfied immediately. CF (iii) is implied by E||z;z}|| < oo, E||z]||> < oo,

/

and conditional homoskedasticity. CF (iv) is implied by full column rank Ez;x!

Land El|zzl]| < .

(You may skip how to derive CF iii and iv from those assumptions.)



The statement that Ez;x} has full column rank is equivalent to saying that Ewx;z}(Ez;zl) ' Ezal is

invertible. So the set of assumptions required for Assumption CF is the same as that in (a).

Now calculate 2y and By as follows. Note first that
I'y= Eaaﬁ,g(wi,ﬁo) = Bz}
AA= (Bzz)™!
Vo = Eg(wi, Bo)g(wi, Bo)' = 0 Ezi2]
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and thus that

Qo =T A’ AVH A ATy = UQExizl’-(Ezizg)_lEzix;
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By the theorem,

V(B = Bo) <5 N (0,07 [Baiz)(Bz)) ' Bral] )
which is the same as the result in (a).

(¢) The covariance matrix can be estimated by
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homoskedasticity, since Vo = 02Ez;2/, and Al A, 2, 02‘/0_1.

Remark. As we proved in the class, choice of A} A, = (

Remark. If the conditional homoskedasticity does not hold, the optimal choice of A,, would be different.
It should be such that A/ A, = (%gfzizz’»)_l, where €; is a consistent estimate of ;. Also we need an

additional assumption E||z;&;||?> < oo to guarantee asymptotic normality of the estimator.

Appendiz. (Central Limit Theorem) Assume iid data and E||s;||? < oo. Then,

vn (1 Zsi — ESi) = 1 Z(sZ — Es;) 4, N(0,Var(s;))
[t v

where Var(s;) = E|[(si — Es;)(si — Es;)'].



