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1. Test

What is a test? Before asking this, why do we estimate an econometric model?

We want to find what the true parameter is. Uncertainty (or deficiency of models and data) makes us
decide with probability less than 1. There are two ways to do this.

1. Test : Set up a hypothesis on the parameter, and decide whether the hypothesis seems correct.

2. Confidence Region (Confidence Interval): Report the set of parameter values that are highly
likely to be correct.

Here we focus on a test, while confidence region will be discussed later in the lecture.

2. Size and Power of the test

Let Θ be the parameter space. In many cases, we set up the null hypothesis H0 : θ = θ0 where θ0 ∈ Θ.
Consider the alternative hypothesis H1 : θ = θ1 where θ1 ∈ Θ and θ1 6= θ0. A test is a criterion on
when we accept/reject H0. The size of the test is defined as follows.

SIZE = Pr(the test rejects H0|H0 is true)

= Pr(the test rejects H0|θ = θ0)

The power of the test is defined as follows.

POWER = Pr(the test rejects H0|H0 is false)

= Pr(the test rejects H0|H1 is true)

= Pr(the test rejects H0|θ = θ1)

We have to make the size as small as possible, and at the same time the power as high as possible.
We care more about the size, so control the size at a fixed level. Unfortunately, the size may not be
0. Fixing the size, we want to maximize the power.

In some cases, H0 : θ ∈ Θ0 or H1 : θ ∈ Θ1 or both, where Θ0 and Θ1 are not singleton. In those cases,
we define

SIZE = sup
θ0∈Θ0

Pr(the test rejects H0|θ = θ0)

Power function γ(θ) = Pr(the test rejects H0|θ)

1



3. Wald, LM, and LR tests

Consider a null hypothesis H0 : θ = θ0 where θ0 ∈ Θ. There are three test statistics based on χ2

distribution.

1. The Wald statistic looks at θ̂n − θ0.

2. The LM (Langrange Multiplier) statistic looks at ∂
∂θQn(θ0).

3. The LR (Likelihood Ratio) statistic looks at Qn(θ0)−Qn(θ̂n).

Under appropriate conditions, we have shown that if θ0 is a true parameter,

√
n(θ̂n − θ0)

d−→ N
(
0, B−1

0 Ω0B
−1
0

)

√
n

∂

∂θ
Qn(θ0)

d−→ N(0, Ω0)

Recall that when X ∼ N(0,Σ), we have AX ∼ N(0, AΣA′). Therefore,

Ω̂−1/2
n B̂n

√
n(θ̂n − θ0)

d−→ N (0, Id)

Ω̃−1/2
n

√
n

∂

∂θ
Qn(θ0)

d−→ N(0, Id)

where Ω̂n
p−→ Ω0, B̂n

p−→ B0, Ω̃n
p−→ Ω0 and d denotes the dimension of θ. Recall that when

X ∼ N(0, Ik), we have X ′X ∼ χ2
k which is a χ2 distribution with k degrees of freedom. So

n(θ̂n − θ0)′B̂nΩ̂−1
n B̂n(θ̂n − θ0)

d−→ χ2
d

n
∂

∂θ′
Qn(θ0)Ω̃−1

n

∂

∂θ
Qn(θ0)

d−→ χ2
d

The first is called the Wald statistic, and the second is called the LM statistic.1 Here are some
remarks. First, the Wald statistic can be constructed using the estimate of the asymptotic variance.
After estimating θ̂n using the model, Ω̂n and B̂n can be estimated using θ̂n. Using these estimates,
we can calculate the Wald statistic. Second, the LM statistic can be obtained without estimation
of θ̂n. We calculate Ω̃n using θ0. Also, ∂

∂θQn(·) is evaluated at θ0. Third, we obtained the above
results assuming that θ0 is a true parameter. If this does not hold, those statistics may not follow a
χ2

d distribution. They are expected to diverge to infinity when H0 is false. Based on the argument
made in the previous section, we control the size at α, and maximize the power. The way to do this
is to reject if the statistics are greater than χ2

d,1−α, and to accept otherwise, where χ2
d,1−α denotes the

1− α quantile of the χ2
d distribution.

1We can show that under an additional assumption,

2n(Qn(θ0)−Qn(θ̂n)) = ĉnLM + op(1)

for some ĉn. So the LHS divided by ĉn is called the LR statistic.
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Before moving on to linear IV example, let us see how we can extend the Wald statistic to the nonlinear
hypothesis case. Define H0 : h(θ) = 0, which means that H0 : θ ∈ Θ0 ≡ {θ : h(θ) = 0}. The Wald
statistic now looks at h(θ̂n)− h(θ0) for any θ0 ∈ Θ0. By ∆-method,

√
n(h(θ̂n)− h(θ0))

d−→ ∂

∂θ′
h(θ0)

√
n(θ̂n − θ0)

Define H := ∂
∂θ′h(θ0), and use h(θ0) = 0, then if θ0 is a true parameter,

√
nh(θ̂n) d−→ N

(
0,HB−1

0 Ω0B
−1
0 H ′)

Repeat the similar procedure to get

nh(θ̂n)′
(
ĤB̂−1

n Ω̂nB̂−1
n Ĥ ′

)−1
h(θ̂n) d−→ χ2

r

where Ĥ
p−→ H, Ω̂n

p−→ Ω0, B̂n
p−→ B0, and r denotes the dimension of h(·). The LM statistic

generalized to the nonlinear hypothesis case is more complicated, but the intuition is similar. Now
we have to estimate θ̃n to obtain the LM statistic, which is a difference from the original case. But
as noted in the lecture note, it sometimes makes the function simpler so that it is easier to estimate
compared to θ̂n.

4. Linear IV example

Consider again linear IV model. Assume conditional homoskedasticity, so that 2SLS estimator is the
most efficient. Suppose H0 : β = β0. Under H0,

√
n(β̂n − β0)

d−→ N
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0, σ2

[
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′
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′
i)
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′
i

]−1
)

Recall that the asymptotic variance can be estimated by
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−1

where σ̂2 is a consistent estimate of σ2 with

σ̂2 =
1
n

n∑

i=1

(yi − x′iβ̂n)2

So in a similar way as in the previous section,

n(β̂n − β0)′
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−1
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d−→ χ2

d
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n

σ̂2
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(β̂n − β0)
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d
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Using matrix notation and cancelling n out, we have

(β̂n − β0)′X ′Z(Z ′Z)−1Z ′X(β̂n − β0)
σ̂2

n

d−→ χ2
d

or equivalently,
(β̂n − β0)′X ′PzX(β̂n − β0)

σ̂2
n

d−→ χ2
d

The LHS is defined as the Wald statistic. This is easy to calculate. Recall that this holds when β0 is
the true parameter value, while the Wald statistic goes to infinity if H0 is false. So after calculating the
Wald statistic, we reject H0 if it is greater than χ2

d,1−α, and accept otherwise. As we have discussed,
this maximizes the power of the Wald test, controlling the size of the test at α.

Let us turn to the LM statistic in this example. Recall that the stochastic criterion function was
defined as

Qn(β) :=
1
2

∥∥∥∥∥An
1
n

n∑

i=1

zi(yi − x′iβ)

∥∥∥∥∥
2

To make simple, use matrix notation and A′nAn = (Z ′Z/n)−1, then this can be written as

Qn(β) =
1
2n

(Y −Xβ)′Z(Z ′Z)−1Z ′(Y −Xβ)

Since
∂

∂β
Qn(β) = − 1

n
X ′Z(Z ′Z)−1Z ′(Y −Xβ)

we use β0 to construct
∂

∂β
Qn(β0) = − 1

n
X ′Z(Z ′Z)−1Z ′(Y −Xβ0)

Also we know that
Ω0 = σ2Exiz

′
i(Eziz

′
i)
−1Ezix

′
i

and thus

Ω̃n = σ̃2 1
n

n∑

i=1

xiz
′
i

(
1
n

n∑

i=1

ziz
′
i

)−1
1
n

n∑

i=1

zix
′
i =

σ̃2

n
X ′Z(Z ′Z)−1Z ′X

where σ̃2 = 1
n(yi − x′iβ0)2 is constructed using β0. Therefore, the LM statistic would be

n
∂

∂β′
Qn(β0)Ω̃−1

n

∂

∂β
Qn(β0)

=
(Y −Xβ0)′Z(Z ′Z)−1Z ′X

[
X ′Z(Z ′Z)−1Z ′X

]−1
X ′Z(Z ′Z)−1Z ′(Y −Xβ0)

σ̃2

d−→ χ2
d

where the convergence takes place when H0 is true. Note again that this can be calculated directly
from the data and the null hypothesis, without estimating β̂n. A criterion on rejection and acceptance
would be determined similarly as in the Wald statistic case.
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