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1. Asymptotic Normality of the TS estimator

Consider the two step (TS) estimator that was mentioned in the problem set 2. The stochastic criterion

function is given in the LHS of the following equation.
Qn(0) = | AuGn(8,7)IIP/2 = Q(0) = | AG(0, 70)||*/2

The above pointwise convergence holds if A, —— A, 7, = 79, and G, 0, 7) 2, G(0,7) for any 6 € ©
and 7 € B(79,¢) for some . Then the TS estimator has the asymptotic normal distribution under the

following assumptions.

1. [CF i] Oy € intO
2. Gnp(0,7) is twice continuously differentiable with respect to 6 in ©¢ for any 7 € 7y (wpl)
3. G (0o, 7) is once continuously differentiable with respect to 7 in 7y (wpl)

4. Gn(0,7) 25 G(0,7) for any 0 € © and T € Tp

(500 < (4) -0 1)

6. A, A

7. supgeg, ||%;9,Qn(9) — B(9)|| % 0 for some nonstochastic B(6)
8. Iy := %G(GO, 70) and A are full rank matrices.

9. [EE2 1] 6, -2 6,

10. [EE2 ii] 2Qn(8,) = 0p(n~/?)

Note that 2 implies CF ii since only G, () has 6 as its argument. Also 2-6 imply CF iii. To verify,

consider
0

0 ~ ~
\/E%QH(QO) = %Gn(e(]a Tn)/A;LAn\/EGn(H()a Tn)

Note that %Gn(ﬂo,?n) L, Ty by 2, 4 and 5, and that Al A, L, A’A by 6. Apply the mean value
theorem to the last part, with respect to 7 around 7y, then

0 BN
7Gn(907 Tn)(Tn - 7_O)

Gn(GOafr\n) = Gn((gO’TO) + o7



where 7, is between 7, and 79, and thus converges in probability to 79. It follows that

a7 = (1 g6t v ( 200 )

67_/ ’/7—\77, — 70
Since 3 and 4 imply %GH(HO,T;) 2, %G(GO,TO) =: Ao, apply 5 to get

VnGn(0o,7n) <, (Ik : Ao) ( ? ) =71+ NoZ>
P

In other words,
G (00, 7) —4 N(o, Vi + AoVi + Vol + ong,Ag)
=:Vo

It then follows that
\/ﬁgeQ”(QO) ~L THA'A(Zy + Ao Za) ~ N(0,T) A’ AVo A’ AT)

Define
Qo =T A’ AVYA' ATy = THA'A(Vi + AoV + VoA + AoV Ap) A’ AT

Finally, 2, 4 and 6-8 imply CF iv. Find B(#) first. Since

762 78 YA 0 = 0’ YV ~
[agangnw)} i = 90, Gn(0,7n) AnAn%Gn(ea Tn) + 86,90, Gn(0,7,) A, AnGr(0,7)
by 6 and 7,
. 0? 0 0 02
[B(H)]m] = phm [8969/@”(0)] = ﬁG(Q,TO)/A/A%G(G,TO) + WG(Q,TO)/A/AG(Q,TO)
mj m J mOUUn

This is continuous at 0y by 2, 4 and 7. Moreover,
a ! Al 8 / !/
BO = B(eo) = @G(eo, ’T()) A AwG(eo,To) = FOA AFO

is nonsingular by 8. Therefore,

NI SR N(o, (Th A’ ATo)"'TH A’ A(Vy + AoVi + Vo) + ongAg)A/Aro(rgA’Aro)—l)

2. Bias and Consistency of 2SLS estimator

Let 6y be the true parameter. An estimator @L is said to be

e unbiased if E[6,] = 6y, and

e consistent if 9An 2, 0y



Which property is more desirable? We care more about consistency. The following example makes it

clear.

Ezample. Let X; ~ iidN (6p,1). Consider the following 2 estimators: 0, = X, and 0,, = ﬁ Yo X
E[an] = 6 but [N 0 does not hold. Lots of data would not help us figure out 83. On the contrary,
E[@n] = 6y, but 0, L, fp. In the finite sample, there is always a bias, but we get less variance as the

sample size grows. |

Consider the linear model.
yi:$;ﬁo+5i, izla"'?”’

Let us investigate the OLS estimator Bprg = (X'X)~1X'Y first.

° BO 1s is unbiased if either

1. x; is nonstochastic and Ele;] = 0, or

2. Ele|X]=0.
° ﬁo LS is consistent if either

1. x; is nonstochastic and Ee; = 0, or

2. (zi,&) are iid, Fx;e; = 0 and E| ;% < co.
e Bors has minimum variance among all linear unbiased estimators if either

1. x; is nonstochastic, Ee; = 0, and E[ec’] = 021, or

2. E[¢|X] =0 and Elee’|X] = o21,,.

In the linear IV model, none of the above assumptions are satisfied. We assume

(x4, 2i, €;) are iid
E:L’lfl' 75 0
EZZ‘EZ‘ =0

Recall that

e the 2SLS estimator //B\QSLS = (X'P,X)"'X'P.Y is consistent under the assumptions that

1. Eljz;zl]] < oo
2. E|lzi]? < o0

3. Ex;2l(Ezzl) ' Ez! is nonsingular



Note that B\QSLS is never unbiased by the assumption Fz;e; # 0. When Ee| X, Z] = 0, ,/B\QSLS would
be unbiased, but less efficient than ,75\0 Ls in the sense that the variance of BQSLS is always greater than
that of BO 5. We have seen that

° BQSLS has minimum asymptotic variance among all GMM estimators that use the moment

condition Ez;e; = 0 if E[u?|z;] = 02 (conditional homoskedasticity) holds.

3. Adding more instruments

As long as z;; satisfies Fz;;e; = 0, it seems better to include z;; as instruments. Is it true? Yes and

no. Consider the following example.

Ezxample. Suppose we have the same number of instruments as the number of observations. All the

instruments satisfy Fz;e; = 0. However, it is easy to see that P, = Z(Z’Z)_lZ’ = I,, so that
Pasis = (X'P.X)'X'P.Y = (X'X)'X'Y = BoLs

We know that Bo Ls is biased in the linear IV model. It is not consistent either. |

From this example, we can infer that using too many instruments may not be the best way to follow.
Indeed, given the number of instruments fixed, the 2SLS estimator is consistent, but if the number of
instruments grows as the sample size increases, it may not be. But the following result supports using

more instruments.

Theorem. Consider a linear IV model and suppose more strict conditional homoskedasticity holds,
that is var|e;|z;, z;] = 02 holds. Let Zo = (Z1, W) for some W. Define 51 = (X'P,1X)"'X'P,1Y and
By = (X'PuX) " X'PoY where P,y = Z1(Z,21)"'Z, and P.y = Zy(Z475)~' Z}). Then,

var(ﬁl) > var([/i\g)

~

in the sense that var(ﬁl) — var(y) is positive semidefinite.

Proof. Note that under the assumptions, the variance of the 2SLS estimators are given by
var(B1) = oX(X' P, X) 7
var(Bs) = 0* (X' Py X) ™!
Note that
X'PoX — X'P4X = X'PyPyX — X'PoP,1PoX

= X/PZQ(I - le)PZZX
= X'Pyo(I — Ps1)(I — P1) P X



The first equality follows from the fact that P,o is idempotent, and that P,oP,1 = P,1 P,o = P,1 since
Zy includes Z;. The last equality holds since (I — P,1) is idempotent. The expression has a quadratic
form, so X' P,o X — X' P,1 X is positive semidefinite. Use the theorem that A— B is positive semidefinite

if and only if B~! — A~ is positive semidefinite, then we get the desired result. |

To summarize, adding more valid instruments increases bias but reduces variance. Since the mean

squared error is bias? + variance, we need to choose the number of instruments that minimizes it.
4. The J-test

The J-statistic is given as follows.

n n -1 n
1 ~ 1 ~ 1 ~
Jpi=mn-— i — Tifn)z | — i — 2iBn) 2%, - i — i) %
n nE (Yi — x;0n)7; (nE (yi — x;0n) ZZZ> nE (yi — i 0n)z

i=1 i=1 i=1
The J-test tests the null hypothesis Hy : Ez;e; = 0. The intuition behind this is the following. If all
the moment conditions that are used in the 2SLS estimation are true, the sample analogue of those will
be close to 0, and thus J,, will be bounded in probability. More specifically, J, 4, xif 4 Where k is the
number of instruments and d is the dimension of Gy. If at least one of the moment conditions is false,

their sample analogue would be different from 0, and thus J,, will diverge to infinity in probability.

But there are two problems as mentioned in the lecture note. First, the J-test has very low power
against some alternative hypotheses. For example, if Ez;e; = Ez;aly # 0 for some ~y, we can show that
Jn N X%_ ¢~ In this case, we would use incorrect moment conditions, so En may not be consistent.
We will verify it later. Second, the finite sample approximation of J-test is very poor. J, converges
in distribution to Xi 4 but very slowly, so when the sample size is small, it may reject true Hp too

often, or may not reject false Hy many times.
5. Efficient GMM

We have seen that in the GMM estimation, choosing the weight matrix so that A’A = V{l yields the

minimum variance of the GMM estimator. Note that 1} is defined as
Vo = Eg(wi, 6)g(wi, 0p)’'

where g(w;, 0y) consists of moment equations. Given the moment conditions Fg(w;, 6p) = 0, Vp is the
variance of g(w;, 6p). What would be the intuition that weighting each moment equation in reverse

proportion to its variance yields the minimum variance? Take a linear IV example so that
E(y; — x80)2 = 0

If z; is volatile, pertubation of 8 around [y by a small amount makes the moment condition violated

by a lot. So we do not want to weight much on such an equation. On the other hand, if z; does not



vary much, we may be able to try many candidate 3’s and find the exact §p that makes the moment
condtion hold. The same logic applies to general moment equations g(w;, 6y). So we want to find a

consistent estimator of V{; and use it to perform an efficient GMM estimation.

In some cases, it can be analytically derived. For example, in the linear IV model, if we assume

conditional homoskedasticity, we may use A/ A, = % Yoiny ziz, to get the efficient estimator, which is
the 2SLS estimator. But in other cases, it may not be easily found. So an efficient GMM estimation
is infeasible. There is, fortunately, the second best way. It uses the property that the GMM estimator

is consistent even though it does not use the optimal weight matrix. The procedure is as follows.

e First step: Obtain the GMM estimator using any weight matrix. Denote it by Bl-

1. Use Al A, = 15" 22! in the IV model, then we get the 2SLS estimator.

—n
2. We may use A, = I, or even other matrices.
3. The resulting estimators are all consistent.

) Y g(wi,ﬁl)g(wi,gl)’. This is a consistent estimator of V. Use
Al A, = V.71 as a weight matrix to get the GMM estimator. Denote it by [3s.

e Second step: Form v, =1

e Third step: Repeat second step using Bg and denote the resulting estimator by 33, and so on.

It is proven that the second step estimator Bg has the same asymptotic distribution as the efficient
GMM estimator. Also, 32, Bg, -+ have the same asymptotic distribution. So we may stop at the
second step.! For example, in the linear IV example as in problem set 4, the (feasible) efficient GMM

estimator can be obtained as follows.

e Calculate the 2SLS estimator //B\QSLS = (X'P.X)"'X'PY.

e Obtain the consistent estimator of 1}

n
(yi — 2} Pas1s)?2iz,
1

V, =

S|

%

o Use 17{1/ % as a weight matrix to get the feasible efficient GMM estimator. It is equivalent to
minimize
11 / AR 1 / /
Qu(B) =5 | =D i —2iB)z | Vit | =D (i — 2iB)z
i=1 i=1
Then we would get
Berr = (X' ZV,\Z' X)X ZV,  Z'Y

'Note that those finite step estimators have different finite sample distribution.



