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1. Asymptotic Normality of the TS estimator

Consider the two step (TS) estimator that was mentioned in the problem set 2. The stochastic criterion
function is given in the LHS of the following equation.

Qn(θ) = ‖AnGn(θ, τ̂n)‖2/2
p−→ Q(θ) = ‖AG(θ, τ0)‖2/2

The above pointwise convergence holds if An
p−→ A, τ̂n

p−→ τ0, and Gn(θ, τ)
p−→ G(θ, τ) for any θ ∈ Θ

and τ ∈ B(τ0, ε) for some ε. Then the TS estimator has the asymptotic normal distribution under the
following assumptions.

1. [CF i] θ0 ∈ intΘ

2. Gn(θ, τ) is twice continuously differentiable with respect to θ in Θ0 for any τ ∈ T0 (wp1)

3. Gn(θ0, τ) is once continuously differentiable with respect to τ in T0 (wp1)

4. Gn(θ, τ)
p−→ G(θ, τ) for any θ ∈ Θ and τ ∈ T0

5.
√

n

(
Gn(θ0, τ0)
τ̂n − τ0

)
d−→

(
Z1

Z2

)
∼ N

(
0,

(
V1 V2

V ′
2 V3

))

6. An
p−→ A

7. supθ∈Θ0
‖ ∂2

∂θ∂θ′Qn(θ)−B(θ)‖ p−→ 0 for some nonstochastic B(θ)

8. Γ0 := ∂
∂θ′G(θ0, τ0) and A are full rank matrices.

9. [EE2 i] θ̂n
p−→ θ0

10. [EE2 ii] ∂
∂θQn(θ̂n) = op(n−1/2)

Note that 2 implies CF ii since only Gn(·) has θ as its argument. Also 2-6 imply CF iii. To verify,
consider √

n
∂

∂θ
Qn(θ0) =

∂

∂θ
Gn(θ0, τ̂n)′A′nAn

√
nGn(θ0, τ̂n)

Note that ∂
∂θ′Gn(θ0, τ̂n)

p−→ Γ0 by 2, 4 and 5, and that A′nAn
p−→ A′A by 6. Apply the mean value

theorem to the last part, with respect to τ around τ0, then

Gn(θ0, τ̂n) =
[
Gn(θ0, τ0) +

∂

∂τ ′
Gn(θ0, τ

∗
n)(τ̂n − τ0)

]
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where τ∗n is between τ̂n and τ0, and thus converges in probability to τ0. It follows that

√
nGn(θ0, τ̂n) =

(
Ik

...
∂

∂τ ′
Gn(θ0, τ

∗
n)

)√
n

(
Gn(θ0, τ0)
τ̂n − τ0

)

Since 3 and 4 imply ∂
∂τ ′Gn(θ0, τ

∗
n)

p−→ ∂
∂τ ′G(θ0, τ0) =: Λ0, apply 5 to get

√
nGn(θ0, τ̂n) d−→

(
Ik

... Λ0

)(
Z1

Z2

)
= Z1 + Λ0Z2

In other words, √
nGn(θ0, τ̂n) d−→ N

(
0, V1 + Λ0V

′
2 + V2Λ′0 + Λ0V3Λ′0︸ ︷︷ ︸

=:V0

)

It then follows that

√
n

∂

∂θ
Qn(θ0)

d−→ Γ′0A
′A(Z1 + Λ0Z2) ∼ N(0, Γ′0A

′AV0A
′AΓ0)

Define
Ω0 := Γ′0A

′AV0A
′AΓ0 = Γ′0A

′A(V1 + Λ0V
′
2 + V2Λ′0 + Λ0V3Λ′0)A

′AΓ0

Finally, 2, 4 and 6-8 imply CF iv. Find B(θ) first. Since
[

∂2

∂θ∂θ′
Qn(θ)

]

mj

=
∂

∂θm
Gn(θ, τ̂n)′A′nAn

∂

∂θj
Gn(θ, τ̂n) +

∂2

∂θm∂θn
Gn(θ, τ̂n)′A′nAnGn(θ, τ̂n)

by 6 and 7,

[B(θ)]mj = plim
[

∂2

∂θ∂θ′
Qn(θ)

]

mj

=
∂

∂θm
G(θ, τ0)′A′A

∂

∂θj
G(θ, τ0) +

∂2

∂θm∂θn
G(θ, τ0)′A′AG(θ, τ0)

This is continuous at θ0 by 2, 4 and 7. Moreover,

B0 := B(θ0) =
∂

∂θ
G(θ0, τ0)′A′A

∂

∂θ′
G(θ0, τ0) = Γ′0A

′AΓ0

is nonsingular by 8. Therefore,

√
n(θ̂n − θ0)

d−→ N
(
0, (Γ′0A

′AΓ0)−1Γ′0A
′A(V1 + Λ0V

′
2 + V2Λ′0 + Λ0V3Λ′0)A

′AΓ0(Γ′0A
′AΓ0)−1

)

2. Bias and Consistency of 2SLS estimator

Let θ0 be the true parameter. An estimator θ̂n is said to be

• unbiased if E[θ̂n] = θ0, and

• consistent if θ̂n
p−→ θ0
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Which property is more desirable? We care more about consistency. The following example makes it
clear.

Example. Let Xi ∼ iidN(θ0, 1). Consider the following 2 estimators: θ̂n = Xn and θn = 1
n−1

∑n
i=1 Xi.

E[θ̂n] = θ0 but θ̂
p−→ θ0 does not hold. Lots of data would not help us figure out θ0. On the contrary,

E[θn] 6= θ0, but θn
p−→ θ0. In the finite sample, there is always a bias, but we get less variance as the

sample size grows.

Consider the linear model.
yi = x′iβ0 + εi, i = 1, · · · , n

Let us investigate the OLS estimator β̂OLS = (X ′X)−1X ′Y first.

• β̂OLS is unbiased if either

1. xi is nonstochastic and E[εi] = 0, or

2. E[ε|X] = 0.

• β̂OLS is consistent if either

1. xi is nonstochastic and Eεi = 0, or

2. (xi, εi) are iid, Exiεi = 0 and E‖xi‖2 < ∞.

• β̂OLS has minimum variance among all linear unbiased estimators if either

1. xi is nonstochastic, Eεi = 0, and E[εε′] = σ2In, or

2. E[ε|X] = 0 and E[εε′|X] = σ2In.

In the linear IV model, none of the above assumptions are satisfied. We assume

(xi, zi, εi) are iid

Exiεi 6= 0

Eziεi = 0

Recall that

• the 2SLS estimator β̂2SLS = (X ′PzX)−1X ′PzY is consistent under the assumptions that

1. E‖xiz
′
i‖ < ∞

2. E‖zi‖2 < ∞
3. Exiz

′
i(Eziz

′
i)
−1Ezix

′
i is nonsingular
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Note that β̂2SLS is never unbiased by the assumption Exiεi 6= 0. When E[ε|X,Z] = 0, β̂2SLS would
be unbiased, but less efficient than β̂OLS in the sense that the variance of β̂2SLS is always greater than
that of β̂OLS . We have seen that

• β̂2SLS has minimum asymptotic variance among all GMM estimators that use the moment
condition Eziεi = 0 if E[u2

i |zi] = σ2 (conditional homoskedasticity) holds.

3. Adding more instruments

As long as zij satisfies Ezijεi = 0, it seems better to include zij as instruments. Is it true? Yes and
no. Consider the following example.

Example. Suppose we have the same number of instruments as the number of observations. All the
instruments satisfy Eziεi = 0. However, it is easy to see that Pz = Z(Z ′Z)−1Z ′ = In so that

β̂2SLS = (X ′PzX)−1X ′PzY = (X ′X)−1X ′Y = β̂OLS

We know that β̂OLS is biased in the linear IV model. It is not consistent either.

From this example, we can infer that using too many instruments may not be the best way to follow.
Indeed, given the number of instruments fixed, the 2SLS estimator is consistent, but if the number of
instruments grows as the sample size increases, it may not be. But the following result supports using
more instruments.

Theorem. Consider a linear IV model and suppose more strict conditional homoskedasticity holds,
that is var[εi|xi, zi] = σ2 holds. Let Z2 = (Z1,W ) for some W . Define β̂1 = (X ′Pz1X)−1X ′Pz1Y and
β̂2 = (X ′Pz2X)−1X ′Pz2Y where Pz1 = Z1(Z ′1Z1)−1Z ′1 and Pz2 = Z2(Z ′2Z2)−1Z ′2. Then,

var(β̂1) ≥ var(β̂2)

in the sense that var(β̂1)− var(β̂2) is positive semidefinite.

Proof. Note that under the assumptions, the variance of the 2SLS estimators are given by

var(β̂1) = σ2(X ′Pz1X)−1

var(β̂2) = σ2(X ′Pz2X)−1

Note that

X ′Pz2X −X ′Pz1X = X ′Pz2Pz2X −X ′Pz2Pz1Pz2X

= X ′Pz2(I − Pz1)Pz2X

= X ′Pz2(I − Pz1)(I − Pz1)Pz2X
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The first equality follows from the fact that Pz2 is idempotent, and that Pz2Pz1 = Pz1Pz2 = Pz1 since
Z2 includes Z1. The last equality holds since (I −Pz1) is idempotent. The expression has a quadratic
form, so X ′Pz2X−X ′Pz1X is positive semidefinite. Use the theorem that A−B is positive semidefinite
if and only if B−1 −A−1 is positive semidefinite, then we get the desired result.

To summarize, adding more valid instruments increases bias but reduces variance. Since the mean
squared error is bias2 + variance, we need to choose the number of instruments that minimizes it.

4. The J-test

The J-statistic is given as follows.

Jn := n · 1
n

n∑

i=1

(yi − x′iβ̂n)z′i

(
1
n

n∑

i=1

(yi − x′iβ̂n)2ziz
′
i

)−1
1
n

n∑

i=1

(yi − x′iβ̂n)zi

The J-test tests the null hypothesis H0 : Eziεi = 0. The intuition behind this is the following. If all
the moment conditions that are used in the 2SLS estimation are true, the sample analogue of those will
be close to 0, and thus Jn will be bounded in probability. More specifically, Jn

d−→ χ2
k−d where k is the

number of instruments and d is the dimension of β0. If at least one of the moment conditions is false,
their sample analogue would be different from 0, and thus Jn will diverge to infinity in probability.

But there are two problems as mentioned in the lecture note. First, the J-test has very low power
against some alternative hypotheses. For example, if Eziεi = Ezix

′
iγ 6= 0 for some γ, we can show that

Jn
d−→ χ2

k−d. In this case, we would use incorrect moment conditions, so β̂n may not be consistent.
We will verify it later. Second, the finite sample approximation of J-test is very poor. Jn converges
in distribution to χ2

k−d but very slowly, so when the sample size is small, it may reject true H0 too
often, or may not reject false H0 many times.

5. Efficient GMM

We have seen that in the GMM estimation, choosing the weight matrix so that A′A = V −1
0 yields the

minimum variance of the GMM estimator. Note that V0 is defined as

V0 = Eg(wi, θ0)g(wi, θ0)′

where g(wi, θ0) consists of moment equations. Given the moment conditions Eg(wi, θ0) = 0, V0 is the
variance of g(wi, θ0). What would be the intuition that weighting each moment equation in reverse
proportion to its variance yields the minimum variance? Take a linear IV example so that

E(yi − x′iβ0)zi = 0

If zi is volatile, pertubation of β around β0 by a small amount makes the moment condition violated
by a lot. So we do not want to weight much on such an equation. On the other hand, if zi does not
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vary much, we may be able to try many candidate β’s and find the exact β0 that makes the moment
condtion hold. The same logic applies to general moment equations g(wi, θ0). So we want to find a
consistent estimator of V0 and use it to perform an efficient GMM estimation.

In some cases, it can be analytically derived. For example, in the linear IV model, if we assume
conditional homoskedasticity, we may use A′nAn = 1

n

∑n
i=1 ziz

′
i to get the efficient estimator, which is

the 2SLS estimator. But in other cases, it may not be easily found. So an efficient GMM estimation
is infeasible. There is, fortunately, the second best way. It uses the property that the GMM estimator
is consistent even though it does not use the optimal weight matrix. The procedure is as follows.

• First step: Obtain the GMM estimator using any weight matrix. Denote it by β̂1.

1. Use A′nAn = 1
n

∑n
i=1 ziz

′
i in the IV model, then we get the 2SLS estimator.

2. We may use An = Ik, or even other matrices.

3. The resulting estimators are all consistent.

• Second step: Form V̂n = 1
n

∑n
i=1 g(wi, β̂1)g(wi, β̂1)′. This is a consistent estimator of V0. Use

A′nAn = V̂ −1
n as a weight matrix to get the GMM estimator. Denote it by β̂2.

• Third step: Repeat second step using β̂2 and denote the resulting estimator by β̂3, and so on.

It is proven that the second step estimator β̂2 has the same asymptotic distribution as the efficient
GMM estimator. Also, β̂2, β̂3, · · · have the same asymptotic distribution. So we may stop at the
second step.1 For example, in the linear IV example as in problem set 4, the (feasible) efficient GMM
estimator can be obtained as follows.

• Calculate the 2SLS estimator β̂2SLS = (X ′PzX)−1X ′PzY .

• Obtain the consistent estimator of V0

V̂n =
1
n

n∑

i=1

(yi − x′iβ̂2SLS)2ziz
′
i

• Use V̂
−1/2
n as a weight matrix to get the feasible efficient GMM estimator. It is equivalent to

minimize

Qn(β) =
1
2

(
1
n

n∑

i=1

(yi − x′iβ)z′i

)
V̂ −1

n

(
1
n

n∑

i=1

(yi − x′iβ)z′i

)

Then we would get
β̂EFF = (X ′ZV̂ −1

n Z ′X)−1X ′ZV̂ −1
n Z ′Y

1Note that those finite step estimators have different finite sample distribution.
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