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1. Derivation of the J-test

In the model of GMM estimation, the J-statistic is defined as follows.
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where θ̂n is an efficient GMM estimator, and Sn
p−→ V −1

0 := Eg(Wi, θ0)g(Wi, θ0)′. It should be
satisfied that θ̂n is obtained using a consistent estimator of the optimal weight matrix. Nevertheless,
it is not necessary to assume that θ̂n is obtained using Sn, nor that Sn is estimated using θ̂n. To see
this in the linear IV example, recall question 1 from the problem set 4. Let Ω̂1

p−→ Ω and Ω̂2
p−→ Ω.

Define β̂n as the GMM estimator that minimizes
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Then we can prove that
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using the same procedure, by defining
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From the above argument, we can see many ways to get a J-statistic, using different β̂n and Ω̂2.
Numerical values vary, but the asymptotic properties will remain the same. A natural way to get the
J-statistic in the empirical analysis is
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where β̂n is an (feasible) efficient GMM estimator. Another way is
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where Sn
p−→ Ω−1 is used to estimate an (feasible) efficient GMM estimator β̂n. Under the assumption

of conditional homoskedasticity, this leads us to

Jn =
1
σ̂2

n

(Y −Xβ̂n)′Z(Z ′Z)−1Z ′(Y −Xβ̂n)
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2. Validity of the J-test

The J-test tests the null hypothesis H0 : Eg(Wi, θ0) = 0 which consists of k equations. In the linear
IV example, it tests H0 : Eziεi = 0. The intuition behind this is the following. If all the moment
conditions that are used in the 2SLS estimation are true, the sample analogue of those will be close to
0, and thus Jn will be bounded in probability. More specifically, Jn

d−→ χ2
k−d where k is the number

of instruments and d is the dimension of β0. If at least one of the moment conditions is false, their
sample analogue would be different from 0, and thus Jn is expected to diverge to infinity in probability.

But there are two problems as mentioned in the lecture note. First, the J-test has very low power
against some alternative hypotheses. Suppose, for example, Eziεi = Ezix

′
iγ 6= 0 for some nonstochastic

d× 1 vector γ. In this case, we can show that Jn
d−→ χ2

k−d.
1 In question 2 in the same problem set,

we tested this alternative. In case 1,

Eziεi = c =




δ
...
δ


 = π

δ

η
= Ezix

′
i

δ

η

so we see that Eziεi = Ezix
′
iγ 6= 0 holds for γ = δ/η. It was verified in this case that the rejection

probability is the same as the significance level for any choice of δ. This property follows from the fact
that the J-statistic has the same limit distribution under H0 and Eziεi = Ezix

′
iγ 6= 0. Therefore we

would fail to reject false H0, so end up with using incorrect moment conditions in the second stage.
In this case, β̂n may be inconsistent with high probability, so the second stage test will reject H0

many times even though it is true. This distorts the size of the whole procedure. In the Monte Carlo
simulation, we observed that the conditional null rejection probability of the Wald test goes up very
quickly as δ gets further from 0 when the above case is used.

Second, the finite sample approximation of the J-test is very poor. Jn converges in distribution to
χ2

k−d but very slowly, so when the sample size is small, it may reject true H0 too often, or may not
reject false H0 many times.

1The proof uses a slight modification of that of question 1 in the problem set 4. A sketch of proof is as follows.
Although gn(β0)

p−→ Eziεi 6= 0, we have

C′gn(β̂n) = DnC′gn(β0)
p−→ [Ik −R(R′R)−1R′]C′Eziεi

Note that by definition of R, the RHS becomes 0, from the assumption that Eziεi = Ezix
′
iγ. Now use the CLT to obtain

C′
√

ngn(β̂n) ≈ DnC′
1√
n

n∑
i=1

(ziεi − Eziεi)
d−→ DC′N

where N ∼ N(0, Σ) and Σ := V ar(ziεi). Since CDC′ΣCDC′ = CDC′, we have

Jn = ngn(β̂n)′Ω̂−1gn(β̂n)
d−→ χ2

m

where m := tr(CDC′Σ) = k − d. In the last derivation, we use the theorem that if X ∼ N(0, Σ) and AΣA = A, then
X ′AX ∼ χ2

tr(AΣ). To check CDC′ΣCDC′ = CDC′ and tr(CDC′Σ) = k − d, use the definition of Σ, C, D and R, and
the assumption Eziεi = Ezix

′
iγ.
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3. Estimation of the LAD model

There is no analytic solution of the least absolute deviations (LAD) regression model.

min
β

1
n

n∑

i=1

|yi − x′iβ|

So we have to use numerical method to find it. There might be some routines that do this work,
available online. But there is no built-in MATLAB function doing it. So we use a minimization
routine by specifying the criterion function that has to be minimized. It is simple. Write in the main
routine

beta_init = zeros(k,1);

beta_hat = fminsearch(’lad_criterion’,beta_init,[],y,x);

and make a criterion function lad criterion.m as follows.

function RET = lad_criterion(beta,y,x);

RET = mean(abs(y - x * beta));

where y is a n× 1 vector of yi, and x is a n× k matrix of x′i. The above function returns the value of
the criterion function

Qn(β) =
1
n

n∑

i=1

|yi − x′iβ|

Then the function fminsearch evaluates the above function at lots of β starting from beta init, and
returns β̂ that minimizes the criterion function. Note that the criterion function is not continuously
differentiable, but convex in β, so there is no problem for the routine to find a global minimum.
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