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1. Causal Expression of AR processes

Definition. An ARMA process {yt} such that φ(L)yt = θ(L)εt is causal if it can be expressed as

yt =
∞∑

j=0

ψjεt−j

Example. Any MA process yt = θ(L)εt is causal.

Definition. An ARMA process {yt} such that φ(L)yt = θ(L)εt is invertible if it can be expressed as

εt =
∞∑

j=0

πjyt−j

Example. Any AR process φ(L)yt = εt is invertible.

Theorem. Let {yt} be an ARMA process such that φ(L)yt = θ(L)εt where φ(·) and θ(·) have no
common zeros. yt is causal if and only if all zeros of φ(·) are outside the unit circle, i.e., φ(z) 6= 0 for
any z ∈ C such that |z| ≤ 1.

If the condition of the above theorem is satisfied, 1
φ(z) is well defined for any |z| ≤ 1. So we can write

as
yt =

θ(L)
φ(L)

εt

which is a causal expression of yt.

Example. Consider φ(z) = 1 − φz where φ ∈ R and |φ| < 1. Zeros of φ(z) are z such that φ(z) = 0,
so z = 1/φ. Since | 1φ | > 1, we can obtain the causal expression of φ(L)yt = εt. Note that

(1− φz)(1 + φz + φ2z2 + · · ·+ φkzk) = 1− φk+1zk+1

As k →∞, this converges to 1 for |z| ≤ 1 since |φ| < 1. So

1
1− φz

= 1 + φz + φ2z2 + · · · =
∑

j=0

φjzj

Now

yt =
1

φ(L)
εt =




∞∑

j=0

φjLj


 εt =

∞∑

j=0

φjεt−j
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Example. Consider φ(z) = 1− z + 0.21z2. Zeros of φ(z) are outside the unit circle. Suppose

1
1− z + 0.21z2

= 1 + ψ1z + ψ2z
2 + ψ3z

3 + · · · =
∞∑

j=0

ψjz
j

This reads as
(1− z + 0.21z2)(1 + ψ1z + ψ2z

2 + ψ3z
3 + · · · ) = 1

Expanding it,

1 + (ψ1 − 1)z + (ψ2 − ψ1 + 0.21)z2 + (ψ3 − ψ2 + 0.21ψ1)z3 + · · · = 1

Since this holds for any |z| ≤ 1, by the method of undetermined coefficients, ψ1 = 1, ψ2 = 0.79,
ψ3 = 0.58, and so on. So φ(L)yt = εt can be written as

yt =
1

φ(L)
εt = εt + εt−1 + 0.79εt−2 + 0.58εt−3 + · · ·

Verify this satisfies φ(L)yt = εt.

In fact, we can use zeros of φ(L) to obtain a causal expression of φ(L)yt = εt. Take the previous
example. We can factorize φ(z) into

φ(z) = (1− 0.3z)(1− 0.7z)

We know that

1
1− 0.3z

= 1 + 0.3z + 0.32z2 + 0.33z3 + · · ·
1

1− 0.7z
= 1 + 0.7z + 0.72z3 + 0.73z3 + · · ·

So

1
φ(z)

=
1

1− 0.3z
· 1
1− 0.7z

= (1 + 0.3z + 0.32z2 + 0.33z3 + · · · )(1 + 0.7z + 0.72z3 + 0.73z3 + · · · )
= 1 + z + 0.79z2 + 0.58z3 + · · ·

Hence

yt =
1

φ(L)
εt

=
1

1− 0.3L
· 1
1− 0.7L

εt

= (1 + 0.3L + 0.32L2 + 0.33L3 + · · · )(1 + 0.7L + 0.72L3 + 0.73L3 + · · · )εt

= (1 + L + 0.79L2 + 0.58L3 + · · · )εt

This holds in general, even if zeros of φ(L) are not real numbers.
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Remark. What does it mean that zeors of φ(L) are outside the unit circle? We can factorize φ(L) into
φ(L) = (1− α1z) · · · (1− αpz) with |αk| < 1 for any k = 1, · · · , p if zeros of φ(L) are outside the unit
circle. This ensures that 1

1−αkz is well defined for any |z| ≤ 1.

2. Conditional Maximum Likelihood Estimation of AR processes

Consider an AR(p) model.
yt = φ1yt−1 + · · ·+ φpyt−p + εt

where εt ∼ N(0, σ2). We have observations (y−p+1, · · · , y0, y1, · · · , yT ). We would like to maximize

L(θ) =
T∏

t=1

f(yt|yt−1, · · · , y−p+1; θ)

where θ = (φ1, · · · , φp, σ
2). Note first that by the AR(p) model,

f(yt|yt−1, · · · , y−p+1; θ) = f(yt|yt−1, · · · , yt−p; θ) =
1√

2πσ2
exp

(
−(yt − φ1yt−1 − · · · − φpyt−p)2

2σ2

)

So the log-likelihood function is

L(θ) =
T∑

t=1

log f(yt|yt−1, · · · , yt−p; θ)

= −T

2
log 2π − T

2
log σ2 −

T∑

t=1

(yt − φ1yt−1 − · · · − φpyt−p)2

2σ2

Differentiate it with respect to φ1, · · · , φp, σ
2 to obtain the set of the first order conditions. Define

xt =




yt−1
...

yt−p


 and Π =




φ1
...

φp




then,

L(θ) = −T

2
log 2π − T

2
log σ2 −

T∑

t=1

(yt −Π′xt)2

2σ2

So the first order conditions are

T∑

t=1

(yt −Π′xt)x′t
2σ2

= 0

− T

2σ2
+

T∑

t=1

(yt −Π′xt)2

2σ4
= 0

and the maximum likelihood estimators are

Π̂ =

(
T∑

t=1

xtx
′
t

)−1 ∑

t=1

xtyt and σ̂2 =
1
T

T∑

t=1

(yt − Π̂′xt)2
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3. Unconditional Maximum Likelihood Estimation of AR processes

Consider an AR(1) model for example.

yt = φyt−1 + εt

where εt ∼ N(0, σ2). We have observations (y0, · · · , yT ). We need to obtain the distribution of y0 to
do the MLE. Let us guess y0 ∼ N(µy, σ

2
y). Since y1 = φy0 + εt,

y1 ∼ N
(
φµy, φ

2σ2
y + σ2

)

The AR(1) model is stationary, so every observation has the same mean and variance. This implies
that the unconditional mean and variance of y1 is the same with those of y0. Therefore,

φµy = µy

φ2σ2
y + σ2 = σ2

y

which implies that

y0 ∼ N

(
0,

σ2

1− φ2

)

The likelihood function is now

L(θ) = f(y0; θ)
T∏

t=1

f(yt|yt−1; θ)

=
1√

2πσ2/(1− φ2)
exp

(
− y2

0

2σ2/(1− φ2)

) T∏

t=1

1√
2πσ2

exp
(
−(yt − φyt−1)2

2σ2

)

and thus

L(θ) = log f(y0; θ) +
T∑

t=1

log f(yt|yt−1; θ)

=
(
−1

2
log 2π − 1

2
log

σ2

1− φ2
− y2

0

2σ2/(1− φ2)

)
+

(
−T

2
log 2π − T

2
log σ2 −

T∑

t=1

(yt − φyt−1)2

2σ2

)

= −T + 1
2

log 2π − T + 1
2

log σ2 +
1
2

log(1− φ2)− y2
0(1− φ2)

2σ2
−

T∑

t=1

(yt − φyt−1)2

2σ2

Obtain the FOC’s as follows.

− φ

1− φ2
+

y2
0φ

σ2
+

T∑

t=1

(yt − φyt−1)yt−1

σ2
= 0

−T + 1
2σ2

+
y2
0(1− φ2)

2σ4
+

T∑

t=1

(yt − φyt−1)2

2σ4
= 0

The above system of equations does not have an analytic solution in general. An exception is the case
where T = 1. This is why we do the conditional MLE with loss of some observations.
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4. Optimal Linear Forecast

A forecast of yt+1 based on xt is nothing but a function of xt that predicts yt+1 well. The goodness of
the forecast depends on cases. When we know the distribution of yt+1 given xt, the optimal forecast
can be the conditional mean, the conditional median, or something else, according to what risk we
care about most. For example, we usually want to minimize the mean squared error of the forecast,
and thus the optimal one would be the conditional mean.

The optimal linear forecast is a linear function of xt that predicts yt+1 best in the sense that the mean
squared error is minimized. Let α′xt be the optimal linear forecast of yt+1. Then α satisfies

E(yt+1 − α′xt)x′t = 0

This is because we want to minimize

min
a

E(yt+1 − a′xt)2

Obtain a FOC with respect to a, then we get a desired property. Another way to prove it is as follows.

E(yt+1 − a′xt)2 = E(yt+1 − α′xt + α′xt − a′xt)2

= E(yt+1 − α′xt)2 + 2 E
[
(yt+1 − α′xt)(α′xt − a′xt)

]
︸ ︷︷ ︸

=E(yt+1−α′xt)x′t(α−a)=0

+E(α′xt − a′xt)2

So this is minimized when a = α.
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