TA section 6
May 15th, 2009 by Yang

1. Causal Expression of AR processes

Definition. An ARMA process $\left\{y_{t}\right\}$ such that $\phi(L) y_{t}=\theta(L) \varepsilon_{t}$ is causal if it can be expressed as

$$
y_{t}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}
$$

Example. Any MA process $y_{t}=\theta(L) \varepsilon_{t}$ is causal.
Definition. An ARMA process $\left\{y_{t}\right\}$ such that $\phi(L) y_{t}=\theta(L) \varepsilon_{t}$ is invertible if it can be expressed as

$$
\varepsilon_{t}=\sum_{j=0}^{\infty} \pi_{j} y_{t-j}
$$

Example. Any AR process $\phi(L) y_{t}=\varepsilon_{t}$ is invertible.

Theorem. Let $\left\{y_{t}\right\}$ be an ARMA process such that $\phi(L) y_{t}=\theta(L) \varepsilon_{t}$ where $\phi(\cdot)$ and $\theta(\cdot)$ have no common zeros. y_{t} is causal if and only if all zeros of $\phi(\cdot)$ are outside the unit circle, i.e., $\phi(z) \neq 0$ for any $z \in \mathbb{C}$ such that $|z| \leq 1$.

If the condition of the above theorem is satisfied, $\frac{1}{\phi(z)}$ is well defined for any $|z| \leq 1$. So we can write as

$$
y_{t}=\frac{\theta(L)}{\phi(L)} \varepsilon_{t}
$$

which is a causal expression of y_{t}.

Example. Consider $\phi(z)=1-\phi z$ where $\phi \in \mathbb{R}$ and $|\phi|<1$. Zeros of $\phi(z)$ are z such that $\phi(z)=0$, so $z=1 / \phi$. Since $\left|\frac{1}{\phi}\right|>1$, we can obtain the causal expression of $\phi(L) y_{t}=\varepsilon_{t}$. Note that

$$
(1-\phi z)\left(1+\phi z+\phi^{2} z^{2}+\cdots+\phi^{k} z^{k}\right)=1-\phi^{k+1} z^{k+1}
$$

As $k \rightarrow \infty$, this converges to 1 for $|z| \leq 1$ since $|\phi|<1$. So

$$
\frac{1}{1-\phi z}=1+\phi z+\phi^{2} z^{2}+\cdots=\sum_{j=0} \phi^{j} z^{j}
$$

Now

$$
y_{t}=\frac{1}{\phi(L)} \varepsilon_{t}=\left(\sum_{j=0}^{\infty} \phi^{j} L^{j}\right) \varepsilon_{t}=\sum_{j=0}^{\infty} \phi^{j} \varepsilon_{t-j}
$$

Example. Consider $\phi(z)=1-z+0.21 z^{2}$. Zeros of $\phi(z)$ are outside the unit circle. Suppose

$$
\frac{1}{1-z+0.21 z^{2}}=1+\psi_{1} z+\psi_{2} z^{2}+\psi_{3} z^{3}+\cdots=\sum_{j=0}^{\infty} \psi_{j} z^{j}
$$

This reads as

$$
\left(1-z+0.21 z^{2}\right)\left(1+\psi_{1} z+\psi_{2} z^{2}+\psi_{3} z^{3}+\cdots\right)=1
$$

Expanding it,

$$
1+\left(\psi_{1}-1\right) z+\left(\psi_{2}-\psi_{1}+0.21\right) z^{2}+\left(\psi_{3}-\psi_{2}+0.21 \psi_{1}\right) z^{3}+\cdots=1
$$

Since this holds for any $|z| \leq 1$, by the method of undetermined coefficients, $\psi_{1}=1, \psi_{2}=0.79$, $\psi_{3}=0.58$, and so on. So $\phi(L) y_{t}=\varepsilon_{t}$ can be written as

$$
y_{t}=\frac{1}{\phi(L)} \varepsilon_{t}=\varepsilon_{t}+\varepsilon_{t-1}+0.79 \varepsilon_{t-2}+0.58 \varepsilon_{t-3}+\cdots
$$

Verify this satisfies $\phi(L) y_{t}=\varepsilon_{t}$.
In fact, we can use zeros of $\phi(L)$ to obtain a causal expression of $\phi(L) y_{t}=\varepsilon_{t}$. Take the previous example. We can factorize $\phi(z)$ into

$$
\phi(z)=(1-0.3 z)(1-0.7 z)
$$

We know that

$$
\begin{aligned}
& \frac{1}{1-0.3 z}=1+0.3 z+0.3^{2} z^{2}+0.3^{3} z^{3}+\cdots \\
& \frac{1}{1-0.7 z}=1+0.7 z+0.7^{2} z^{3}+0.7^{3} z^{3}+\cdots
\end{aligned}
$$

So

$$
\begin{aligned}
\frac{1}{\phi(z)} & =\frac{1}{1-0.3 z} \cdot \frac{1}{1-0.7 z} \\
& =\left(1+0.3 z+0.3^{2} z^{2}+0.3^{3} z^{3}+\cdots\right)\left(1+0.7 z+0.7^{2} z^{3}+0.7^{3} z^{3}+\cdots\right) \\
& =1+z+0.79 z^{2}+0.58 z^{3}+\cdots
\end{aligned}
$$

Hence

$$
\begin{aligned}
y_{t} & =\frac{1}{\phi(L)} \varepsilon_{t} \\
& =\frac{1}{1-0.3 L} \cdot \frac{1}{1-0.7 L} \varepsilon_{t} \\
& =\left(1+0.3 L+0.3^{2} L^{2}+0.3^{3} L^{3}+\cdots\right)\left(1+0.7 L+0.7^{2} L^{3}+0.7^{3} L^{3}+\cdots\right) \varepsilon_{t} \\
& =\left(1+L+0.79 L^{2}+0.58 L^{3}+\cdots\right) \varepsilon_{t}
\end{aligned}
$$

This holds in general, even if zeros of $\phi(L)$ are not real numbers.

Remark. What does it mean that zeors of $\phi(L)$ are outside the unit circle? We can factorize $\phi(L)$ into $\phi(L)=\left(1-\alpha_{1} z\right) \cdots\left(1-\alpha_{p} z\right)$ with $\left|\alpha_{k}\right|<1$ for any $k=1, \cdots, p$ if zeros of $\phi(L)$ are outside the unit circle. This ensures that $\frac{1}{1-\alpha_{k} z}$ is well defined for any $|z| \leq 1$.

2. Conditional Maximum Likelihood Estimation of AR processes

Consider an $\operatorname{AR}(p)$ model.

$$
y_{t}=\phi_{1} y_{t-1}+\cdots+\phi_{p} y_{t-p}+\varepsilon_{t}
$$

where $\varepsilon_{t} \sim N\left(0, \sigma^{2}\right)$. We have observations $\left(y_{-p+1}, \cdots, y_{0}, y_{1}, \cdots, y_{T}\right)$. We would like to maximize

$$
L(\theta)=\prod_{t=1}^{T} f\left(y_{t} \mid y_{t-1}, \cdots, y_{-p+1} ; \theta\right)
$$

where $\theta=\left(\phi_{1}, \cdots, \phi_{p}, \sigma^{2}\right)$. Note first that by the $\operatorname{AR}(p)$ model,

$$
f\left(y_{t} \mid y_{t-1}, \cdots, y_{-p+1} ; \theta\right)=f\left(y_{t} \mid y_{t-1}, \cdots, y_{t-p} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{t}-\phi_{1} y_{t-1}-\cdots-\phi_{p} y_{t-p}\right)^{2}}{2 \sigma^{2}}\right)
$$

So the log-likelihood function is

$$
\begin{aligned}
\mathcal{L}(\theta) & =\sum_{t=1}^{T} \log f\left(y_{t} \mid y_{t-1}, \cdots, y_{t-p} ; \theta\right) \\
& =-\frac{T}{2} \log 2 \pi-\frac{T}{2} \log \sigma^{2}-\sum_{t=1}^{T} \frac{\left(y_{t}-\phi_{1} y_{t-1}-\cdots-\phi_{p} y_{t-p}\right)^{2}}{2 \sigma^{2}}
\end{aligned}
$$

Differentiate it with respect to $\phi_{1}, \cdots, \phi_{p}, \sigma^{2}$ to obtain the set of the first order conditions. Define

$$
x_{t}=\left(\begin{array}{c}
y_{t-1} \\
\vdots \\
y_{t-p}
\end{array}\right) \text { and } \Pi=\left(\begin{array}{c}
\phi_{1} \\
\vdots \\
\phi_{p}
\end{array}\right)
$$

then,

$$
\mathcal{L}(\theta)=-\frac{T}{2} \log 2 \pi-\frac{T}{2} \log \sigma^{2}-\sum_{t=1}^{T} \frac{\left(y_{t}-\Pi^{\prime} x_{t}\right)^{2}}{2 \sigma^{2}}
$$

So the first order conditions are

$$
\begin{aligned}
\sum_{t=1}^{T} \frac{\left(y_{t}-\Pi^{\prime} x_{t}\right) x_{t}^{\prime}}{2 \sigma^{2}} & =0 \\
-\frac{T}{2 \sigma^{2}}+\sum_{t=1}^{T} \frac{\left(y_{t}-\Pi^{\prime} x_{t}\right)^{2}}{2 \sigma^{4}} & =0
\end{aligned}
$$

and the maximum likelihood estimators are

$$
\widehat{\Pi}=\left(\sum_{t=1}^{T} x_{t} x_{t}^{\prime}\right)^{-1} \sum_{t=1} x_{t} y_{t} \text { and } \widehat{\sigma}^{2}=\frac{1}{T} \sum_{t=1}^{T}\left(y_{t}-\widehat{\Pi}^{\prime} x_{t}\right)^{2}
$$

3. Unconditional Maximum Likelihood Estimation of AR processes

Consider an $\operatorname{AR}(1)$ model for example.

$$
y_{t}=\phi y_{t-1}+\varepsilon_{t}
$$

where $\varepsilon_{t} \sim N\left(0, \sigma^{2}\right)$. We have observations $\left(y_{0}, \cdots, y_{T}\right)$. We need to obtain the distribution of y_{0} to do the MLE. Let us guess $y_{0} \sim N\left(\mu_{y}, \sigma_{y}^{2}\right)$. Since $y_{1}=\phi y_{0}+\varepsilon_{t}$,

$$
y_{1} \sim N\left(\phi \mu_{y}, \phi^{2} \sigma_{y}^{2}+\sigma^{2}\right)
$$

The $\mathrm{AR}(1)$ model is stationary, so every observation has the same mean and variance. This implies that the unconditional mean and variance of y_{1} is the same with those of y_{0}. Therefore,

$$
\begin{aligned}
\phi \mu_{y} & =\mu_{y} \\
\phi^{2} \sigma_{y}^{2}+\sigma^{2} & =\sigma_{y}^{2}
\end{aligned}
$$

which implies that

$$
y_{0} \sim N\left(0, \frac{\sigma^{2}}{1-\phi^{2}}\right)
$$

The likelihood function is now

$$
\begin{aligned}
L(\theta) & =f\left(y_{0} ; \theta\right) \prod_{t=1}^{T} f\left(y_{t} \mid y_{t-1} ; \theta\right) \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2} /\left(1-\phi^{2}\right)}} \exp \left(-\frac{y_{0}^{2}}{2 \sigma^{2} /\left(1-\phi^{2}\right)}\right) \prod_{t=1}^{T} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{t}-\phi y_{t-1}\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

and thus

$$
\begin{aligned}
\mathcal{L}(\theta) & =\log f\left(y_{0} ; \theta\right)+\sum_{t=1}^{T} \log f\left(y_{t} \mid y_{t-1} ; \theta\right) \\
& =\left(-\frac{1}{2} \log 2 \pi-\frac{1}{2} \log \frac{\sigma^{2}}{1-\phi^{2}}-\frac{y_{0}^{2}}{2 \sigma^{2} /\left(1-\phi^{2}\right)}\right)+\left(-\frac{T}{2} \log 2 \pi-\frac{T}{2} \log \sigma^{2}-\sum_{t=1}^{T} \frac{\left(y_{t}-\phi y_{t-1}\right)^{2}}{2 \sigma^{2}}\right) \\
& =-\frac{T+1}{2} \log 2 \pi-\frac{T+1}{2} \log \sigma^{2}+\frac{1}{2} \log \left(1-\phi^{2}\right)-\frac{y_{0}^{2}\left(1-\phi^{2}\right)}{2 \sigma^{2}}-\sum_{t=1}^{T} \frac{\left(y_{t}-\phi y_{t-1}\right)^{2}}{2 \sigma^{2}}
\end{aligned}
$$

Obtain the FOC's as follows.

$$
\begin{aligned}
-\frac{\phi}{1-\phi^{2}}+\frac{y_{0}^{2} \phi}{\sigma^{2}}+\sum_{t=1}^{T} \frac{\left(y_{t}-\phi y_{t-1}\right) y_{t-1}}{\sigma^{2}} & =0 \\
-\frac{T+1}{2 \sigma^{2}}+\frac{y_{0}^{2}\left(1-\phi^{2}\right)}{2 \sigma^{4}}+\sum_{t=1}^{T} \frac{\left(y_{t}-\phi y_{t-1}\right)^{2}}{2 \sigma^{4}} & =0
\end{aligned}
$$

The above system of equations does not have an analytic solution in general. An exception is the case where $T=1$. This is why we do the conditional MLE with loss of some observations.

4. Optimal Linear Forecast

A forecast of y_{t+1} based on x_{t} is nothing but a function of x_{t} that predicts y_{t+1} well. The goodness of the forecast depends on cases. When we know the distribution of y_{t+1} given x_{t}, the optimal forecast can be the conditional mean, the conditional median, or something else, according to what risk we care about most. For example, we usually want to minimize the mean squared error of the forecast, and thus the optimal one would be the conditional mean.

The optimal linear forecast is a linear function of x_{t} that predicts y_{t+1} best in the sense that the mean squared error is minimized. Let $\alpha^{\prime} x_{t}$ be the optimal linear forecast of y_{t+1}. Then α satisfies

$$
E\left(y_{t+1}-\alpha^{\prime} x_{t}\right) x_{t}^{\prime}=0
$$

This is because we want to minimize

$$
\min _{a} E\left(y_{t+1}-a^{\prime} x_{t}\right)^{2}
$$

Obtain a FOC with respect to a, then we get a desired property. Another way to prove it is as follows.

$$
\begin{aligned}
E\left(y_{t+1}-a^{\prime} x_{t}\right)^{2} & =E\left(y_{t+1}-\alpha^{\prime} x_{t}+\alpha^{\prime} x_{t}-a^{\prime} x_{t}\right)^{2} \\
& =E\left(y_{t+1}-\alpha^{\prime} x_{t}\right)^{2}+2 \underbrace{E\left[\left(y_{t+1}-\alpha^{\prime} x_{t}\right)\left(\alpha^{\prime} x_{t}-a^{\prime} x_{t}\right)\right]}_{=E\left(y_{t+1}-\alpha^{\prime} x_{t}\right) x_{t}^{\prime}(\alpha-a)=0}+E\left(\alpha^{\prime} x_{t}-a^{\prime} x_{t}\right)^{2}
\end{aligned}
$$

So this is minimized when $a=\alpha$.

