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1. Optimal Forecast for Gaussian Processes

Time series processes are Gaussian if they have a jointly normal distribution.1 For Guassian processes,
the optimal forecast is actually linear.

Theorem. Let Yt+1 and Xt be jointly Gaussian processes as follows.
(

Yt+1

Xt

)
∼ N

([
µ1

µ2

]
,

[
Ω11 Ω12

Ω21 Ω22

])

Then,
Yt+1|Xt ∼ N

(
µ1 + Ω12Ω−1

22 (Xt − µ2), Ω11 − Ω12Ω−1
22 Ω21

)

Proof. See Theorem 3.5.3. in Hogg et al. (2005, p.175), and Chapter 4.6 in Hamilton (1994, p.100).

Applying the above theorem, it follows that

E[Yt+1|Xt] = µ1 + Ω12Ω−1
22 (Xt − µ2)

= (µ1 − Ω12Ω−1
22 µ2) + Ω12Ω−1

22 Xt

=
(

µ1 − Ω12Ω−1
22 µ2 Ω12Ω−1

22

) (
1
Xt

)

which means that E[Yt+1|Xt] is a linear function of 1 and Xt. Since E[Yt+1|Xt] minimizes the mean
squared error among all forecasts, it is the optimal linear forecast when it is a linear function.

2. HAC Estimation

Consider the model
yt = x′tθ0 + ut, t = 1, · · · , T

where
Extut = 0

One of the consistent estimators of θ0 is

θ̂OLS =

(
T∑

t=1

xtx
′
t

)−1 T∑

t=1

xtyt

Then, θ̂OLS has the following asymptotic distribution.
√

T (θ̂OLS − θ0)
d−→ N

(
0, (Extx

′
t)
−1Ω(Extx

′
t)
−1

)

1In other words, their joint pdf is a Gaussian function.
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where

Ω := lim
T→∞

var

(
1√
T

T∑

t=1

xtut

)

We are interested in estimating Ω when the errors are heteroskedastic and the data are autocorrelated.
As technical conditions, we need stationary and mixing xtut. Since Extut = 0, we have

Ω = lim
T→∞

1
T

T∑

t=1

T∑

s=1

Extutx
′
sus

Define

ΩT :=
1
T

T∑

t=1

T∑

s=1

Extutx
′
sus

then by definition, ΩT → Ω as T →∞. Let vt := xtut and define

ΓT (j) :=





1
T

T∑

t=j+1

Evtv
′
t−j j ≥ 0

1
T

T∑

t=−j+1

Evt+jv
′
t j < 0

then,

ΩT =
T−1∑

j=−T+1

ΓT (j)

Now we know that Evtvt−j is invariant to t, so if j ≥ 0 is relatively small,

1
T − j

T∑

t=j+1

vtv
′
t−j

p−→ Evtv
′
t−j

by the (dependent and nonidentical version of) law of large numbers. This ensures that for such j,

1
T

T∑

t=j+1

vtv
′
t−j − ΓT (j) =

T − j

T

1
T − j

T∑

t=j+1

vtv
′
t−j −

T − j

T
Evtv

′
t−j

p−→ 0

The same property holds for j < 0 relatively small in absolute value. Define

Γ̃T (j) :=





1
T

T∑

t=j+1

vtv
′
t−j j ≥ 0

1
T

T∑

t=−j+1

vt+jv
′
t j < 0

Let ST be relatively small. For any j such that |j| ≤ ST , we have Γ̃T (j)−ΓT (j)
p−→ 0. For any j such

that |j| > ST , we hope ΓT (j) is so small that we may ignore. This is the idea that leads to the HAC
estimator of Ω.
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Theorem. Suppose (1) k : R → [−1, 1] be a kernel such that k(0) = 1,
∫∞
−∞ k2(x)dx < ∞ and k is

symmetric, continuous at 0 and continuous up to a finite number of points, (2) ST →∞ and ST
T → 0

as T → ∞, (3) xtut is mean 0, stationary and mixing, and (4)
√

T (θ̂OLS − θ0) = Op(1). Then, the
HAC estimator defined by

Ω̂T,HAC :=
T+1∑

j=−T+1

k

(
j

ST

)
Γ̃T (j)

is consistent for Ω.

We use the following kernels.

1. Truncated kernel
kTR(x) =

{
1 |x| ≤ 1
0 otherwise

2. Bartlett kernel
kBT (x) =

{
1− |x| |x| ≤ 1
0 otherwise

3. Parzen kernel

kPR(x) =





1− 6x2 + 6|x|3 |x| ≤ 1/2
2(1− |x|)3 1/2 ≤ |x| ≤ 1
0 otherwise

For example, if we use a truncated kernel,

Ω̂T,TR :=
ST∑

j=−ST

Γ̃T (j)

If we use Bartlett kernel,

Ω̂T,BT :=
ST∑

j=−ST

(
1− |j|

ST

)
Γ̃T (j)

Remark. With the above kernels, we drop all vtv
′
t−j for j > |ST | in constructing Ω̂T,HAC , so the HAC

estimator is not unbiased. But if ST is close to T , Ω̂T is not consistent for Ω. So choosing ST is a
tradeoff between bias and variance. Note that both the asymptotic bias and the nonshrinking variance
lead to inconsistency of the estimator. The condition (2) in the above theorem ensures that ΩT,HAC

is consistent for Ω.

Remark. Bartlett kernel downweighs vtv
′
t−j for j close to ST in absolute value, while a truncated

kernel does not. Although both give a consistent estimator, Bartlett kernel may produce more biased
estimator than a truncated kernel. But Bartlett kernel always produces an estimated matrix that is
positive definite, while a truncated kernel does not. Parzen kernel also always yields a positive definite
matrix. Choice of a kernel is a less significant problem than that of a bandwidth ST .
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3. Bootstrap Methods

Nonparametric bootstrap is nothing but resampling the same size of observations from the data with
replacement. With the resampled set of observations, we calculate the statistics we are interested in.
Do this B times, then we have B statistics.

Example. How to obtain t-statistic with bootstrap method.
Let (Wi)n

i=1 be the original data.

1. Fix b, and draw n random numbers U∗
bi ∼ U [0, 1], i = 1, · · · , n.

2. Let W ∗
bi := WpnU∗biq where paq is a ceiling function that gives the smallest number no less than

a. Then, it follows that

Pr(W ∗
bi = Wj) = Pr(j − 1 < nU∗

bi ≤ j) =
1
n

for all j, and that W ∗
bi is independent over b and i since U∗

bi is.

3. From (W ∗
bi)

n
i=1, calcualte θ̂∗nb and ω̂∗nb in the same way as θ̂n and ω̂n. Form

T ∗nb =
√

n(θ̂∗nb − θ̂n)
ω̂∗nb

4. Repeat 1-3 for b = 1, · · · , B.

We claim that those statistics have the same distribution as the original statistic from the data
does. Theoretical justification for this is that the data tell very much about its distribution, so the
empirical distribution approximates the original distribution well. Then, resampling from the data
with replacement is approximately equivalent to sampling from the original distribution. In the above
example, Tn would be distirubted in the approximately same way as T ∗nb, where

Tn =
√

n(θ̂n − θ0)
ω̂n

is the original statistic. As we have B such statistics, those approximate the distribution of the original
statistic. So we use the critical value obtained from (T ∗nb)

B
b=1, instead of that from the exact distribution

of Tn, when we test, or construct CI. See the lecture note for details on two-sided symmetric CI and
two-sided equal-tailed CI.

Remark. We calcualte T ∗nb =
√

n(θ̂∗nb−θ̂n)
ω̂∗nb

for several reasons. First, θ̂n is the true parameter in the
bootstrap world, and also believed to be consistent for the original true parameter. Second, when we
want to construct CI, there is no information on the true parameter. Third, even when we test the
null hypothesis H0 : θ = θ0, using the above formula gives better size and power properties. If we use
critical values obtained from T̃ ∗nb =

√
n(θ̂∗nb−θ0)

ω̂∗nb
, the power of the test is very poor, although the null

rejection probability may (or may not) converge to the nomial size as n grows.
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