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1. Asymptotic Distribution of MLE of VAR Model

Consider the VAR(p) model
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where g, ~ N(0,Q). The conditional distribution of y; given y;—1,--- ,y—_p41 is
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So we would like to maximize
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It turns out that the conditional MLE of the parameters is numerically the same with the OLS

estimator. Denote
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then the VAR(p) model can be written as
yr = ' Xy + &

and
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or equivalently,
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Also define & = y; — II;; p X4, then
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If we write
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7 = vecll and w := vechf)

then, we have the following asymptotic distribution.
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where

Q= EX, X!

asym.cov(Tij, Omi) = Til0jm + Tim0ji

2. Application to AR(1)

Consider

Yt = C+ pYs—1 + &¢

From the asymptotic result,
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Note first that

Apply these to obtain
ﬁ( c—c ) LN(O [ o2+ 21— p?) —p(l—p?) D
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and thus
VI(5 - p) <5 N(0,1-p)

which depends only on p, but not on ¢ and 2.



3. Unit Root Case

The above result enables us to guess that when p =1,
V(- p) = N(0,0)

which is equivalent to

VT(5 - p) = 0p(1)

In order to get an asymptotic distribution, we need to blow up p — p with a series growing faster than

VT. A more sophiscated statistical theory shows
T(5—p) = O,(1)

and actually it converges to a certain distribution. Try some other exponents to verify this. If we use
B <1,

and if § > 1,
T°(p — p) diverges

4. Causality Test

Consider the VAR(2) model

Yo = C+ P1yi—1 + P2yi—2 + ¢
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where ¢; ~ N(0,Q). Following the question 3 in Problem Set 8, write it as
ye=c+ Wy + 0@y, 5+ ¢y

which reads as
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so the past history of 35 does not affect y;1 conditional on the past history of y;1. Testing Hy means

to check if there is a causal effect of y;2 on y;1. To do this, estimate first
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and obtain
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we have under the null hypothesis,
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so the Wald statistic has the following asymptotic distribution.

W= T(B7 ) [RQe QK] (R )

5. Other Problems
(a) Nonstationarity of Unit Root Model

Consider the AR(1) model
Yt = PYt—1 + €t

where ¢; ~ iid WN(0,02) and 02 > 0. There cannot be a stationary causal solution y; if p = 1.



Proof. Suppose there exists such a solution. The AR(1) equation together with p = 1 implies
P =yt + 2y e + e}

and taking expectation,
Ey; = Ey;_y + 2By, 16 + Ee}

From stationarity, Fy? = Ey? | and from causality, Fy;_1e; = 0, so the above equation reads as
0=0"
which is a contradiction.

(b) Optimal Linear Forecast of Stationary Time Series

Let o/ X; be the optimal linear forecast of y;11, where X; = (yt1_1)' By the condition of the optimal

E {yt-i-l_a/( yt11 )] (1 y—1)=0

linear forecast,
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So the optimal linear forecast of y;+1 based on 1 and ¥, is
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Apply this to the AR(1) model
Yt =Cc+ pyr—1 + &t
Note that
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Therefore,

Pyria|lye1) = o' Xy = p(1 — p?) + pPyia



(c) Subcollection of AR(1) Processes
Consider the AR(1) model
Yo =c+ pyr—1+¢et

where g; ~ iid WN(0,02). Now suppose we observe z; := ya;. We claim z is also an AR(1) process.

To prove this, we need to show that z; satisfies the first order linear difference equation
ze =d+ Qa1+ ut
with u; ~ iid WN(0,w?). Note first that
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=c+ pc+ ,02 Yot—2 + pEat—1 + €24
——— =~ ————
=:d =:1¢ =iug
=d+ ¢zp_1 + uy

Finally verify that u; is an iid WN process by checking

Eut = EEQt + pE€2t_1 =0
w? = Euf = Esgt + 2pEeoe0—1 + p2E€%t_1 =(1+ ,02)02

Euus_p, = Eegeoropn + Eegrear_on—1 + Eear—169t—9n + Eear—162t—2p—1 =0

for any ¢ and h # 0.



