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1. Asymptotic Distribution of MLE of VAR Model

Consider the VAR(p) model

yt︸︷︷︸
n×1

= c + φ1yt−1 + · · ·+ φpyt−p + εt

where εt ∼ N(0,Ω). The conditional distribution of yt given yt−1, · · · , y−p+1 is

yt|yt−1, · · · , y−p+1 ∼ N(c + φ1yt−1 + · · ·+ φpyt−p, Ω)

So we would like to maximize

L(θ) =
T∏

t=1

f(yt|yt−1, · · · , y−p+1; θ)

or equivalently,

L(θ) =
T∑

t=1

log f(yt|yt−1, · · · , yt−p; θ)

It turns out that the conditional MLE of the parameters is numerically the same with the OLS
estimator. Denote

Xt︸︷︷︸
(np+1)×1

=




1
yt−1

...
yt−p


 and Π︸︷︷︸

(np+1)×n

=




c′

φ′1
...

φ′p




then the VAR(p) model can be written as

yt = Π′Xt + εt

and

Π̂MLE =

(
T∑

t=1

XtX
′
t

)−1 T∑

t=1

Xty
′
t

or equivalently,

Π̂′MLE =
T∑

t=1

ytX
′
t

(
T∑

t=1

XtX
′
t

)−1

Also define ε̂t = yt − Π̂′MLEXt, then

Ω̂MLE =
1
T

T∑

t=1

ε̂tε̂
′
t
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If we write

y︸︷︷︸
T×n

=




y′1
...

y′T


 , X︸︷︷︸

T×(np+1)

=




X ′
1

...
X ′

T


 and ε̂︸︷︷︸

T×n

=




ε̂′1
...

ε̂′T




then,

Π̂MLE = (X ′X)−1X ′y

Ω̂MLE =
1
T

ε̂′ε̂

Define
π := vecΠ and ω := vechΩ

then, we have the following asymptotic distribution.

√
T

(
π̂T − π
ω̂T − ω

)
d−→ N

(
0,

[
Ω⊗Q−1 0

0 Σ22

])

where

Q := EXtX
′
t

asym.cov(σ̂ij , σ̂ml) = σilσjm + σimσjl

2. Application to AR(1)

Consider
yt = c + ρyt−1 + εt

From the asymptotic result,

√
T

(
ĉ− c
ρ̂− ρ

)
d−→ N

(
0, σ2

[
1 Eyt−1

Eyt−1 Ey2
t−1

]−1
)

Note first that

µ := Eyt−1 = Eyt =
c

1− ρ

var(yt) =
σ2

1− ρ2

Apply these to obtain

√
T

(
ĉ− c
ρ̂− ρ

)
d−→ N

(
0,

[
σ2 + µ2(1− ρ2) −µ(1− ρ2)
−µ(1− ρ2) 1− ρ2

])

and thus √
T (ρ̂− ρ) d−→ N(0, 1− ρ2)

which depends only on ρ, but not on c and σ2.
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3. Unit Root Case

The above result enables us to guess that when ρ = 1,

√
T (ρ̂− ρ) d−→ N(0, 0)

which is equivalent to √
T (ρ̂− ρ) = op(1)

In order to get an asymptotic distribution, we need to blow up ρ̂− ρ with a series growing faster than√
T . A more sophiscated statistical theory shows

T (ρ̂− ρ) = Op(1)

and actually it converges to a certain distribution. Try some other exponents to verify this. If we use
β < 1,

T β(ρ̂− ρ) = op(1)

and if β > 1,
T β(ρ̂− ρ) diverges

4. Causality Test

Consider the VAR(2) model
yt︸︷︷︸

2×1

= c + φ1yt−1 + φ2yt−2 + εt

where εt ∼ N(0,Ω). Following the question 3 in Problem Set 8, write it as

yt = c + Φ(1)yt−1 + Φ(2)yt−2 + εt

which reads as
(

yt1

yt2

)
=

(
c1

c2

)
+

(
Φ(1)

11 Φ(1)
12

Φ(1)
21 Φ(1)

22

)(
yt−1,1

yt−1,2

)
+

(
Φ(2)

11 Φ(2)
12

Φ(2)
21 Φ(2)

22

)(
yt−2,1

yt−2,2

)
+

(
εt1

εt2

)

If H0 : Φ(1)
12 = Φ(2)

12 = 0 is true,

yt1 = c1 + Φ(1)
11 yt−1,1 + Φ(2)

11 yt−2,1 + εt1

so the past history of yt2 does not affect yt1 conditional on the past history of yt1. Testing H0 means
to check if there is a causal effect of yt2 on yt1. To do this, estimate first

Π̂ = (X ′X)−1X ′y =

(
T∑

t=1

XtX
′
t

)−1 T∑

t=1

Xtyt
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and obtain

Ω̂ =
1
T

ε̂′ε̂ =
1
T

T∑

t=1

ε̂tε̂
′
t

p−→ Ω

Q̂ =
1
T

X ′X =
1
T

T∑

t=1

XtX
′
t

p−→ EXtX
′
t = Q

Since

√
T (vecΠ̂︸ ︷︷ ︸

=:π̂

−vecΠ) =
√

T







ĉ1

Φ̂(1)
11

Φ̂(1)
12

Φ̂(2)
11

Φ̂(2)
12

ĉ2

Φ̂(1)
21

Φ̂(1)
22

Φ̂(2)
21

Φ̂(2)
22




−




c1

Φ(1)
11

Φ(1)
12

Φ(2)
11

Φ(2)
12

c2

Φ(1)
21

Φ(1)
22

Φ(2)
21

Φ(2)
22







d−→ N(0, Ω⊗Q−1)

we have under the null hypothesis,

√
T




(
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

)

︸ ︷︷ ︸
=:R




ĉ1

Φ̂(1)
11

Φ̂(1)
12

Φ̂(2)
11

Φ̂(2)
12

ĉ2

Φ̂(1)
21

Φ̂(1)
22

Φ̂(2)
21

Φ̂(2)
22




−
(

0
0

)

︸ ︷︷ ︸
=:r




d−→ N
(
0, R(Ω⊗Q−1)R′)

so the Wald statistic has the following asymptotic distribution.

W := T (Rπ̂ − r)′
[
R(Ω̂⊗ Q̂−1)R′

]−1
(Rπ̂ − r) d−→ χ2

2

5. Other Problems

(a) Nonstationarity of Unit Root Model

Consider the AR(1) model
yt = ρyt−1 + εt

where εt ∼ iid WN(0, σ2) and σ2 > 0. There cannot be a stationary causal solution yt if ρ = 1.
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Proof. Suppose there exists such a solution. The AR(1) equation together with ρ = 1 implies

y2
t = y2

t−1 + 2yt−1εt + ε2
t

and taking expectation,
Ey2

t = Ey2
t−1 + 2Eyt−1εt + Eε2

t

From stationarity, Ey2
t = Ey2

t−1 and from causality, Eyt−1εt = 0, so the above equation reads as

0 = σ2

which is a contradiction.

(b) Optimal Linear Forecast of Stationary Time Series

Let α′Xt be the optimal linear forecast of yt+1, where Xt =
(

1
yt−1

)
. By the condition of the optimal

linear forecast,

E

[
yt+1 − α′

(
1

yt−1

)] (
1 yt−1

)
= 0

Since
E

(
1

yt−1

) (
1 yt−1

)
= E

(
1 yt−1

yt−1 y2
t−1

)
=

(
1 µ
µ γ0 + µ2

)

and
Eyt+1

(
1 yt−1

)
= E

(
yt+1 yt+1yt−1

)
=

(
µ γ2 + µ2

)

we have

α′ =
(

µ γ2 + µ2
) (

1 µ
µ γ0 + µ2

)−1

=
1
γ0

(
µ γ2 + µ2

)(
γ0 + µ2 −µ
−µ 1

)

=
(

(γ0−γ2)µ
γ0

γ2

γ0

)

So the optimal linear forecast of yt+1 based on 1 and yt−1 is

P̂ (yt+1|1, yt−1) = α′Xt =
(γ0 − γ2)µ

γ0
+

γ2

γ0
yt−1

Apply this to the AR(1) model
yt = c + ρyt−1 + εt

Note that

γ0 =
σ2

1− ρ2
and γh = ρhγ0

Therefore,
P̂ (yt+1|1, yt−1) = α′Xt = µ(1− ρ2) + ρ2yt−1
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(c) Subcollection of AR(1) Processes

Consider the AR(1) model
yt = c + ρyt−1 + εt

where εt ∼ iid WN(0, σ2). Now suppose we observe zt := y2t. We claim zt is also an AR(1) process.
To prove this, we need to show that zt satisfies the first order linear difference equation

zt = d + φzt−1 + ut

with ut ∼ iid WN(0, ω2). Note first that

zt = y2t = c + ρy2t−1 + ε2t

= c + ρc︸ ︷︷ ︸
=:d

+ ρ2

︸︷︷︸
=:φ

y2t−2 + ρε2t−1 + ε2t︸ ︷︷ ︸
=:ut

= d + φzt−1 + ut

Finally verify that ut is an iid WN process by checking

Eut = Eε2t + ρEε2t−1 = 0

ω2 := Eu2
t = Eε2

2t + 2ρEε2tε2t−1 + ρ2Eε2
2t−1 = (1 + ρ2)σ2

Eutut−h = Eε2tε2t−2h + Eε2tε2t−2h−1 + Eε2t−1ε2t−2h + Eε2t−1ε2t−2h−1 = 0

for any t and h 6= 0.
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