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1. Final Exam 2005

Q1. (i) FALSE.
In the linear IV model, the OLS estimator is biased and not even consistent. We would care about the
finite sample bias, which is why we are reluctant to use the 2SLS estimator, but using OLS instead of
2SLS is worse. 2SLS is at least consistent. We may estimate by 2SLS method and employ other test
procedures such as LMcue. Other ways are using LIML estimation or Fuller-type estimation.

(ii) FALSE.
Recall PS5, Q1. As the number of instruments goes up, the asymptotic variance decreases in the
positive definite sense.

(iii) QUESTIONABLE.
An MA(q) process is weakly stationary, since its mean and autocovariance function do not depend on
t. It is ergodic too, since its autocovariance is 0 if the lag is greater than q. But the weak stationarity
does not imply ergodicity. ‘Therefore’ part is misleading.

(iv) TRUE.
See PS5, Q3 (v). A simpler proof is as follows. Suppose 1/Xn = op(1) and Xn = Op(1). By the
theorem, 1/Xn ·Xn = op(1)Op(1) = op(1). But this is equivalent to 1 = op(1), which is a contradiction.

(v) FALSE.
When the data are iid, HAC estimation is consistent even with ST = 0. This is because the product
of terms with lags more than 1 has expectation 0 when the data are iid.

(vi) TRUE.
The Wald test is known to sometimes overreject the true null. This means that the asymptotic
distribution of the Wald statistic does not approximate the finite sample distribution very well, and
that the critical value obtained by the asymptotic distribution is far less than it should be when the
correct distribution is used. So we may obtain too narrow confidence interval when we use the Wald
statistic. In other words, if we do inference by inverting a Wald statistic, the probability that the true
null is contained in the confidence interval would be less than the nominal coverage probability.

(vii) FALSE.
The correct reason that a large value of the J-statistic is not reliable is that its finite sample distribution
is not approximated by the χ2 distribution very well. In fact, inconsistency of the J-test against certain
local alternatives makes us observe a too low J-statistic even when the null is false, which is not a
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problem with rejecting the null when we observe a big J-statistic.

(viii) FALSE.
The optimal linear forecast of Yt based on Xt is α′Xt = EYtX

′
t(EXtX

′
t)
−1Xt which depends only

on the first and the second moments regardless of the distribution of the process. ‘Only if’ part is
incorrect.

(ix) QUESTIONABLE.
It depends on the situation. If we want a consistent estimator, we can still use the 2SLS estimator.
When we look for an efficient estimator, the 2SLS estimator is not appropriate to use since it is not
asymptotically efficient when the conditional homoskedasticity does not hold.

(x) TRUE.
The asymptotic variance of the sample median is 1

4f(0)2
. This is actually πσ2

2 , which depends on σ2.

Q2. (i) See PS8, Q2 (c). Try also the case where an AR(1) process is observed every third time
period.

(ii) To prove that there is no stationary causal solution, see PS8, Q2 (a). Prove nonexistence of
a stationary noncausl solution as follows. Suppose there is a stationary noncausal solution. From
yt = yt−1 + εt, we have yt−1 = yt − εt. Square both sides and take expectation, then

Ey2
t−1 = Ey2

t − 2Eytεt + Eε2
t

By stationarity, Ey2
t−1 = Ey2

t and by a noncausal solution, Eytεt = 0. So the above equation reads as
Eε2

t = 0, which contradicts to σ2 > 0.

Q3. See PS5, Q1.

Q4. For the asymptotic normality of extremum estimators, we need two sets of assumptions.

Assumption CF

(i) θ0 ∈ int(Θ)
(ii) Qn(θ) ∈ C2(Θ0) for some neighborhood Θ0 ⊂ Θ of θ0 (wp1)
(iii)

√
n ∂

∂θQn(θ0)
d−→ N(0,Ω0)

(iv) supθ∈Θ0
‖ ∂2

∂θ∂θ′Qn(θ)−B(θ)‖ p−→ 0
where a nonstochastic function B(θ) is continuous at θ0, and B0 := B(θ0) is nonsingular.

Assumption EE2

(i) θ̂n
p−→ θ0

(ii) ∂
∂θQn(θ̂n) = op(n−1/2)
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If the above assumptions hold, we have

√
n(θ̂n − θ0)

d−→ N(0, B−1
0 Ω0B

−1
0 )

How do those assumptions specialize in the MLE case?

• CF(i) has to be assumed.

• CF(ii): Set up Qn(θ) as follows.

Qn(θ) = − 1
n

n∑

i=1

log f(Wi; θ)

The condition is satisfied if f(Wi; θ) is twice continuously differentiable in θ, or equivalently, if
f(Wi; θ) ∈ C2(Θ0).

• CF(iii): Obtain
√

n
∂

∂θ
Qn(θ0) = − 1√

n

n∑

i=1

∂

∂θ
log f(Wi; θ0)

Note first that

E
∂

∂θ
Qn(θ0) = −E

∂

∂θ
log f(Wi; θ0) = − ∂

∂θ
E log f(Wi; θ0) =

∂

∂θ
Q(θ0) = 0

where we should assume integrability of log f(Wi; θ) in Wi, and E supθ∈Θ0
‖ ∂

∂θ log f(Wi; θ)‖ < ∞
for interchangibility of integral and derivative signs. Then,

√
n

∂

∂θ
Qn(θ0) = − 1√

n

n∑

i=1

∂

∂θ
log f(Wi; θ0)

d−→ N

(
0, E

∂

∂θ
log f(Wi; θ0)

∂

∂θ′
log f(Wi; θ0)

)

by CLT where we should assume iid data, and E‖ ∂
∂θ log f(Wi; θ0)‖2 < ∞. Then,

Ω0 := E
∂

∂θ
log f(Wi; θ0)

∂

∂θ′
log f(Wi; θ0)

• CF(iv): Obtain
∂2

∂θ∂θ′
Qn(θ) = − 1

n

n∑

i=1

∂2

∂θ∂θ′
log f(Wi; θ)

Define B(θ) := −E ∂2

∂θ∂θ′ log f(Wi; θ0), then we have

sup
θ∈Θ0

∥∥∥∥
∂2

∂θ∂θ′
Qn(θ)−B(θ)

∥∥∥∥
p−→ 0

by uniform WLLN under the additional assumption that E supθ∈Θ0
‖ ∂2

∂θ∂θ′ log f(Wi; θ)‖ < ∞. Fi-
nally, continuity of B(θ) at θ0 is guaranteed by the assumptions made already, and nonsingularity
of B0 := B(θ0) has to be assumed.
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• EE(i) has to be assumed here, although we can find more primitive conditions implying this.

• EE(ii) has to be assumed.

In fact, in the MLE case, B0 = Ω0 by the information equality theorem under another condition
guaranteeing interchangibility of integral and derivative signs in its proof. Then, we do not need to
assume nonsingularity of B0 separately. This leads us to the simpler result

√
n(θ̂n − θ0)

d−→ N(0, B−1
0 )

Q5. Consider a VAR(p) model.

yt = c + φ1yt−1 + · · ·+ φpyt−p + εt

where ε ∼ N(0, Ω). When some of the parameters are assumed to be 0, we may want to focus on
estimating nonzero parameters. Write the above model as

y1t =x′1tβ1 + ε1t

...

ynt =x′ntβn + εnt

where each equation corresponds to the respective element of the vectors in the original model, and
the restricted parameters are dropped out along with the corresponding data. Write the system of
equations as one equation as follows.




y1t

y2t
...

ynt




︸ ︷︷ ︸
=yt

=




x′1t 0 · · · 0
0 x′2t 0
...

. . .
...

0 0 · · · x′nt




︸ ︷︷ ︸
=:X ′t




β1

β2
...

βn




︸ ︷︷ ︸
=:β

+




ε1t

ε2t
...

εnt




︸ ︷︷ ︸
=εt

We maximize

L(β, Ω) = −Tn

2
log 2π +

T

2
log |Ω−1| − 1

2

T∑

t=1

(yt −X ′
tβ)′Ω−1(yt −X ′

tβ)

The first order condition with respect to β is

T∑

t=1

XtΩ−1(yt −X ′
tβ) = 0

Assuming that we know Ω, we obtain the following estimator.

β̂ =

(
T∑

t=1

XtΩ−1X ′
t

)−1 T∑

t=1

XtΩ−1yt
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This can also be written as

β̂ =

(
T∑

t=1

n∑

i=1

x̃itx̃
′
it

)−1 T∑

t=1

n∑

i=1

x̃itỹit

where L such that L′L = Ω−1 is used to define

x̃′t :=




x̃′1t
...

x̃′nt


 = LX ′

t and ỹt :=




y1t

· · ·
ynt


 = Lyt

This is infeasible when we do not know Ω. Another infeasible way is to solve the simultaneous equations
of the FOCs. An easier and feasible way is using a two-step method.

1. Estimate the model using equation-by-equation OLS, and denote it by β̂(0).

β̂(0) =




(∑T
t=1 x1tx

′
1t

)−1 ∑T
t=1 x1ty1t

...(∑T
t=1 xntx

′
nt

)−1 ∑T
t=1 xntynt




2. Obtain Ω̂(0) using β̂(0).

Ω̂(0) =
1
T

T∑

t=1

(yt −X ′
t β̂(0))(yt −X ′

t β̂(0))
′

3. Use Ω̂(0) to get β̂(1).

β̂(1) =

(
T∑

t=1

n∑

i=1

x̃itx̃
′
it

)−1 T∑

t=1

n∑

i=1

x̃itỹit

We can iterate more, but this is enough in the sense that β̂(1) has the same asymptotic distribution
as the infeasible MLE does (Magnus, 1978). Thus it is asymptotically efficient.

Q6. (i) (Only the bootstrap part) Suppose X1, · · · , Xn are iid with mean µ and σ2. By CLT, we have
√

n(X − µ) d−→ N(0, σ2)

where X := 1
n

∑n
i=1 Xi is a sample mean. We estimate σ̂2 = 1

n

∑n
i=1(Xi −X)2, then the t-statistic is

given by

Tn =
√

n(X − µ)
σ̂

A symmetric two-sided confidence interval using the bootstrap

Obtain the bootstrap samples (X∗
bi)

n
i=1 by randomly drawing from (Xi)n

i=1 with replacement. Estimate
X
∗
b := 1

n

∑n
i=1 X∗

bi and σ̂∗2b = 1
n

∑n
i=1(X

∗
bi −X

∗)2. The bootstrap t-statistic is given by

T ∗nb =
√

n(X∗
b −X)

σ̂∗b
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Do this for b = 1, · · · , B, then we have B t-statistics which can be used to find a critical value. Specifi-
cally, order |T ∗nb| from smallest to larget, and denote them by |T ∗n |(b). Define k̂1−α := |T ∗n |(x(1−α)(B+1)y).
Since Pr(|Tn| ≤ k̂1−α) → 1− α,

Pr

(
X − k̂1−ασ̂√

n
≤ µ ≤ X +

k̂1−ασ̂√
n

)
→ 1− α

The symmetric two-sided confidence interval for µ is thus
[
X − k̂1−ασ̂√

n
, X +

k̂1−ασ̂√
n

]

An equal-tailed two-sided confidence interval using the bootstrap

Order T ∗nb from smallest to largest, and denote them by T ∗n(b). Let k̂1−α/2 := T ∗n(x(1−α/2)(B+1)y), and

k̂α/2 := T ∗n(B+1−x(1−α/2)(B+1)y). Since Pr(k̂α/2 ≤ Tn ≤ k̂1−α/2) → 1− α,

Pr

(
X − k̂1−α/2σ̂√

n
≤ µ ≤ X − k̂α/2σ̂√

n

)
→ 1− α

or the equal-tailed two-sided confidence interval for µ is
[
X − k̂1−α/2σ̂√

n
,≤ X − k̂α/2σ̂√

n

]

(ii) Note that the null rejection property of the test has been discussed in PS7, Q2 (i). For the power
properties, suppose that H0 is false, or in other words, θ > 0. Since θ̂

p−→ θ > 0,

T ∗n =
√

n
θ̂∗ − θ̂

s(θ̂∗)
+
√

n
θ̂ − θ

s(θ̂∗)
+
√

n
θ

s(θ̂∗)

would diverge to infinity, where the first summand converges in distribution to N(0, 1), the second
summand is bounded in probability (converging to N(0, 1) under the assumption that s(θ̂∗)/s(θ̂)

p−→
1), and the last summand diverges to infinity (under the assumption that s(θ̂∗) p−→ s for some s).
This implies that q∗n(1− α) also diverges to infinity. At the same time,

Tn =
√

n
θ̂ − θ

s(θ̂)
+
√

n
θ

s(θ̂)

would diverge to infinity at the same speed as T ∗n does (under the same assumption). So the probability
that Tn > q∗n(1− α) may stay at a level between 0 and 1 even when n →∞. To see this,

Pr(Tn > q∗n(1− α)) = Pr
(

Tn√
n

>
q∗n(1− α)√

n

)
= Pr

(
op(1) +

T ∗n√
n

s(θ̂∗)

s(θ̂)
>

q∗n(1− α)√
n

)

would converge to some number which is not far away from α.
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